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Abstract. The study of dimensions of secant varieties is a very classical subject which regained a
lot of interest in the last part of the last century due to its relation with the study of tensor de-
compositions. The celebrated Alexander-Hirschowitz Theorem of 1995 completed the classification of
Veronese varieties whose secant varieties have dimension less than the expected. Since then, a great
literature has been dedicated to similar classifications for Segre and Segre-Veronese varieties. In 2013,
Abo and Brambilla conjectured that Segre-Veronese embeddings of Pm×Pn in bidegree (c, d) are never
defective if both c and d are larger or equal than three. They also proved the inductive step of a
possible proof, namely they showed that if they are non-defective in the cases (3, 3), (3, 4) and (4, 4),
then they are non-defective for higher bidegrees. In this paper we solve the case (3, 3). Following a
classical approach, we turn our attention to the equivalent problem of computing the dimensions of
linear systems of divisors of bi-degree (3, 3) in Pm × Pn with general 2-fat base points. The novelty is
to use a degeneration technique that allows some of the base points to collapse together. The latter
technique proved its power in a recent work of the first author and Mella in the context of identifiability
for Waring decompositions of general polynomials.

The present work has not yet been submitted to the arXiv nor to a journal since we are still trying to use these methods
to approach the cases (3, 4) and (4, 4). At the moment of the submission to participate at MEGA2021, this should be

considered as a work-in-progress, but we might submit it to a journal during the next few months before the conference.

1. Introduction

A classical problem in algebraic geometry that goes back to late XIX century concerns the classi-
fication of defective varieties, i.e., the classification of algebraic varieties whose secant varieties have
dimension strictly smaller than the one expected by a direct parameter count. In the last decades, this
problem gained a lot of attention due to its relation with additive decompositions of tensors. Indeed,
Segre varieties parametrize decomposable tensors; similarly, Veronese varieties and Segre-Veronese
varieties are the symmetric and partially-symmetric analogous. We refer to [CGO14] and [BCC+18]
for an overview on the geometric problem and to [Lan12] for the relations between secant varieties
and questions on tensors.

The main result in this area of research is the celebrated Alexander-Hirschowitz Theorem, proven in
[AH95], which classifies defective Veronese varieties, completing the work started more than 100 years
earlier. Denote by Vd

n be the Veronese variety given by the embedding of Pn via the linear system of
degree d divisors. Several examples of defective Veronese varieties were known already at the time of
Clebsch, Palatini and Terracini, but we had to wait until the work of Alexander and Hirschowitz to
have a complete proof that those were the only exceptional cases among Veronese varieties.

Theorem 1.1 (Alexander-Hirschowitz). Let n, d and r be positive integers. The Veronese variety Vd
n

is r-defective if and only if either

(1) d = 2 and 2 ≤ r ≤ n, or
(2) (n, d, r) ∈ {(2, 4, 5), (3, 4, 9), (4, 3, 7), (4, 4, 14)}.

We refer to [BO08, Section 7] for an historical overview on this theorem. After this result, the
community tried to extend the classification of defective varieties to Segre and Segre-Veronese varieties.

Here we focus on the Segre-Veronese variety with two factors, i.e., the image SVc,d
m×n of the embedding

of Pm × Pn via the linear system of divisors of bidegree (c, d). The Segre variety corresponds to
c = d = 1. There are several known defective Segre varieties, and a conjectural classification can be
found in [AOP09]. Many Segre-Veronese varieties are defective as well. Defective cases were found by
Catalisano, Geramita and Gimigliano [CGG05, CGG08], Abrescia [Abr08], Bocci [Boc05], Dionisi and
Fontanari [DF01], Abo and Brambilla [AB09], Carlini and Chipalkatti [CC03] and Ottaviani [Ott07].
In [AB13, Conjecture 5.5], Abo and Brambilla conjectured that these are the only defective cases. In
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all examples in which SVc,d
m×n is known to be defective, either c or d is strictly smaller than three.

This suggested a weaker conjecture, stated in [AB13, Conjecture 5.6].

Conjecture 1.2 (Abo-Brambilla). If c ≥ 3 and d ≥ 3, then SVc,d
m×n is not defective for any m and n.

Abo and Brambilla themselves managed to greatly reduce the problem. Thanks to [AB13, Theo-

rem 1.3], in order to prove Conjecture 1.2 it is enough to prove that SV3,3
m×n, SV3,4

m×n and SV4,4
m×n are

not defective for every m and n. This reminds what happened with Theorem 1.1, where the last one
to be overcome was the case of cubics. Low degrees are difficult to handle because they are rich of
defective cases, therefore they cannot be used as base cases for inductive arguments. The purpose of
this paper is to solve one of the three remaining cases.

Theorem 1.3. For any m and n, then SV3,3
m×n is not defective.

A classical approach to compute the dimension of secant varieties consists in translating the problem
to the computation of the dimension of certain linear system of divisors with multiple base points.
The latter can be computed with degeneration techniques in which the base points are assumed to
have support in some special configuration in order to start an inductive argument; see Section 2.2 for
details. The idea is well known since the work by Castelnuovo and Terracini at the beginning of last
century. In the 1980s, Alexander and Hirschowitz improved drastically this method by introducing a
new degeneration technique, called differential Horace method, which allowed them to complete the
classification of defective Veronese varieties. Despite its major success in the proof of Theorem 1.1, as
well as most of the results about defectiveness of Segre and Segre-Veronese varieties, the differential
Horace method might lead to linear systems whose base locus has a complicated structure, making
this approach sometimes difficult to apply.

In this paper, we employ a different degeneration approach, introduced by Evain in [Eva97]: the
base points are not only degenerated to a special position, but also allowed to collide together; see
Section 2.3 for details. The degenerated linear system has a 0-dimensional base point with a very
special, yet understood, non-reduced structure. Apparently a disadvantage, this new scheme can be
very useful to find the right specialization and the right inductive approach. This technique proved
to be efficient for instance in [Eva99] for linear systems of plane curves, in [Gal19] for linear systems
in P3 and in [GM19] in the context of Waring decompositions of polynomials.

As far as we know, this is the first time this method is applied in the multigraded case and to
approach problems regarding classification of defective varieties. We believe that it has great potential
to be exploited towards a complete proof of Conjecture 1.2.

Structure of the paper. In Section 2 we recall the basic definitions for secant varieties and linear
systems with multiple base points. We also illustrate the tools we use in our computation, such as
Castelnuovo exact sequence and collisions of fat points. In Section 3 we prove a series of results
that we apply in the proof of our main theorem, which is presented in Section 4. In Appendix A we
describe the software computations we performed to check the initial cases of our inductive proofs. In
Appendix B we collect long and tedious arithmetic computations needed in our proofs.
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acknowledges partial financial support from A. v. Humboldt Foundation/Stiftung through a fellowship
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2. Basics and background

Definition 2.1. Fixed m,n, c, d ∈ N, the Segre-Veronese variety SVc,d
m×n is the image of the

embedding of Pm × Pn via the linear system of divisors of bidegree (c, d).

The Segre-Veronese variety has a precise interpretation in terms of partially symmetric tensors. Let
Symd

n+1 be the C-vector space of degree d homogeneous polynomials in n+ 1 variables with complex
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coefficients. The variety SVc,d
m×n is parametrized by partially symmetric tensors in Symc

m+1⊗Symd
n+1

which are decomposable, or of rank 1, i.e.,

SVc,d
m×n = {f ⊗ g : f ∈ Symc

m+1, g ∈ Symd
n+1} ⊂ P

(
Symc

m+1⊗Symd
n+1

)
Definition 2.2. Let V ⊂ PN be a projective variety. The r-th secant variety of V is the Zariski-
closure of the union of all linear spaces spanned by r points on V , i.e.,

σr(V ) :=
⋃

p1,...,pr∈V
〈p1, . . . , pr〉 ⊂ PN .

In the case of Segre-Veronese varieties, the r-th secant variety consists of the Zariski-closure of the set
of rank-r partially symmetric tensors, i.e.,

σr(SVc,d
m×n) =

{
r∑

i=1

fi ⊗ gi : fi ∈ Symc
m+1, gi ∈ Symd

n+1

}
⊂ P

(
Symc

m+1⊗Symd
n+1

)
.

Our goal is to compute the dimension of σr(SVc,d
m×n). By a count of parameters, its expected

dimension is

edimσr

(
SVc,d

m×n

)
= min

{
dimP

(
Symc

m+1⊗Symd
n+1

)
, r(dim SVc,d

m×n +1)− 1
}

=

= min

{(
c+m

m

)(
d+ n

n

)
− 1, r(m+ n) + r − 1

}
.

The actual dimension is always smaller than or equal to the expected one. If it is strictly smaller,
then we say that the variety is r-defective. A variety is defective if it is r-defective for some r.

2.1. Linear systems with non-reduced base locus. A standard approach to study the dimension
of secant varieties is to translate the problem to a question about dimensions of linear systems with
multiple base points. For this purpose, we fix some notation we will use through the paper.

Definition 2.3. Let p be a point on a variety V defined by an ideal Ip. If a ∈ N, then the a-fat point
supported at p is the 0-dimensional scheme defined by Iap . If p1, . . . , pr ∈ V , then the fat points
scheme of type (a1, . . . , ar), denoted by a1p1 + . . .+ arpr, is the union of fat points defined by the
ideal Ia1p1 ∩ . . . ∩ I

ar
pr . We call it general when p1, . . . , pr are general points of V .

Definition 2.4. Let p1, . . . , pr ∈ Pn and let a1, . . . , ar ∈ N. If X = a1p1 + . . . + arpr is a fat points
scheme, then we denote by Ldn(X) the vector space IX ∩ Symd

n+1 of homogeneous polynomials of

degree d vanishing with multiplicity ai at pi. We will write just Ldn instead of Ldn(∅). The virtual
dimension of Ldn(X) is given by the count of parameters

vdimLdn(X) :=

(
n+ d

n

)
−

r∑
i=1

(
ai + n− 1

n

)
.

In a similar way, if p1, . . . , pr ∈ Pm × Pn and X = a1p1 + . . .+ arpr, then we denote by Lc,dm×n(X) the

vector space IX ∩ (Symc
n+1⊗Symd

n+1) of bihomogeneous polynomials of bidegree (c, d) vanishing with
multiplicity ai at pi. Its virtual dimension is defined as

vdimLc,dm×n(X) :=

(
m+ c

m

)(
n+ d

n

)
−

r∑
i=1

(
ai +m+ n− 1

m+ n

)
.

In both cases, the expected dimension is the maximum between 0 and the virtual dimension. Hence
the actual dimension is larger or equal to the expected one. If the inequality is strict, then we say
that the linear system is special. If the virtual dimension is non-negative and the linear system is
not special, we say that it is regular.

It is important to recall what happens to the dimension of linear systems under specialization of
the base locus. Consider a fat points scheme X = a1p1 + . . . + arpr ⊂ Pm × Pn. By semicontinuity,

there exists a Zariski-open subset of (Pm × Pn)×r where the dimension of Lc,dm×n(X) is constant and
takes the minimal value among all possible choices of (p1, . . . , pr) ∈ (Pm × Pn)×r. We denote by

Lc,dm×n(a1, . . . , ar) the linear system associated to a general choice of the support. In particular,

dimLc,dm×n(X) ≥ dimLc,dm×n(a1, . . . , ar).
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In case of repetitions in the vector (a1, . . . , ar), we use the notation as for the s-tuple (a, . . . , a).

The expected dimension of the secant variety σr(SVc,d
m×n) and the expected dimension of the linear

system Lc,dm×n(X) are related. Indeed,

codimσr(SVc,d
m×n) = dimLc,dm×n(2r).

This is a consequence of the more general Terracini’s Lemma which applies to any algebraic variety
embedded via a linear system, as the Segre-Veronese varieties. See [BCC+18, Corollary 1] for a recent

reference. In particular, SVc,d
m×n is r-defective if and only if Lc,dm×n(2r) is special. This allows us to

translate Theorem 1.3 into the following statement.

Theorem 2.5. If m,n and r are positive integers, then L3,3m×n(2r) is non-special.

For fixed values of m and n, in order to prove this theorem it is enough to check few values of r,
thanks to the following straightforward observation.

Remark 2.6. Let X ′ ⊂ X be two fat points schemes of Pm × Pn. Then:

• if Lc,dm×n(X) is regular, then L(X ′) is regular;

• if Lc,dm×n(X ′) = 0, then L(X) = 0.

In order to prove that Lc,dm×n(2r) is non-special for every r, it is enough to consider

r∗ := max
{
s ∈ N : vdimLc,dm×n(2s) ≥ 0

}
and r∗ := min

{
s ∈ N : vdimLc,dm×n(2s) < 0

}
and prove that Lc,dm×n(2r∗) is regular and Lc,dm×n(2r

∗
) is zero.

2.2. Inductive methods. Our proof of Theorem 2.5 relies on a classical inductive approach. Let V
be a projective variety and let H be a subvariety of V . Consider a linear system L on V and let LH
be the linear system on H given by

LH := {D ∩H : D ∈ L}.
Let X ⊂ V be a fat points scheme. Then there is an exact sequence of vector spaces

0→ L(X +H)→ L(X)→ LH(X ∩H), (2.1)

sometimes called Castelnuovo exact sequence, where L(X +H) denotes the subsystem of L of divisors
containing X ∪H.

Definition 2.7. Let H be a divisor of V . Let IX be the ideal defining a fat points scheme X ⊂ V .

• The residue of X with respect to H is the subscheme ResH(X) ⊂ V defined by the saturation
(IX : IH)sat.
• The trace of X on H is the scheme-theoretic intersection TrH(X) = H∩X, defined by IX+IH .

In this paper we are interested in the case V = Pm × Pn and L = Lc,dm×n. Let H ∼= Pm−1 × Pn be a
divisor of bidegree (1, 0). An analogous statements holds if H has bidegree (0, 1). Then (2.1) becomes

0→ Lc−1,dm×n (ResH(X))→ Lc,dm×n(X)→ Lc,d(m−1)×n(TrH(X)), (2.2)

where the left-most arrow corresponds to the multiplication by H. Hence,

vdimLc,dm×n(X) ≤ dimLc,dm×n(X) ≤ dimLc−1,dm×n (ResH(X)) + dimLc,d(m−1)×n(TrH(X)). (2.3)

If X = a1p1 + . . . + arpr + b1q1 + . . . + bsqs, where p1, . . . , pr are general points and q1, . . . , qs are
general on H, then

ResH X = a1p1 + . . .+ arpr + (b1 − 1)q1 + . . .+ (bs − 1)qs ⊂ Pm × Pn and

TrH X = b1q1 + . . .+ bsqs ⊂ H ∼= Pm−1 × Pn.

A straightforward computation gives

vdimLc−1,dm×n (ResH(X)) + vdimLc,d(m−1)×n(TrH(X)) = vdimLc,dm×n(X). (2.4)

By employing (2.3), we use the Castelnuovo exact sequence in two ways.

(1) If we want to prove that Lc,dm×n(X) = 0, then it is enough to prove that

Lc−1,dm×n (ResH(X)) = Lc,d(m−1)×n(TrH(X)) = 0.
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(2) If we want to prove that Lc,dm×n(X) is regular, by (2.4) it is enough to prove that both

Lc−1,dm×n (ResH(X)) and Lc,d(m−1)×n(TrH(X)) are regular.

Other classical tools are degeneration arguments. As we recalled, if X̃ is a specialization of the

scheme X, then dimLc,dm×n(X̃) ≥ dimLc,dm×n(X). Here is how we will use this fact: if H ∼= Pm′ × Pn′

is a subvariety of Pm × Pn, then

vdimLc,dm×n(X̃) = vdimLc,dm×n(X) ≤ dimLc,dm×n(X) ≤ dimLc,dm×n(X̃)

≤ dimLc,dm×n(X̃ +H) + dimLc,dm′×n′(X̃ ∩H). (2.5)

Therefore, in order to prove that Lc,dm×n(X) is non-special, the task is to find a suitable specialization

X̃ for which we are able to compute the two summands on the right-hand-side of (2.5) and such that
the upper bound coincides with the lower bound.

Note that sequence (2.2) allows a double induction: in one of the summands we have a lower degree
while in the other we have a lower dimension. The classical method of specializing the support of
X does not always work due to arithmetic constrains that does not allow to match the upper and
the lower bound in (2.5). This was the case of the system L3n(2r) of cubics in projective space with
general 2-fat base points. After a series of papers, Alexander and Hirschowitz refined the classical
method and managed to complete the proof of the classification of special linear systems Ldn(2r) and,
as byproduct, of the celebrated classification of defective Veronese varieties. This method is called
differential Horace method and, in the last decades, it has been used to prove the non-speciality of
several linear systems in projective and multiprojective space. Despite its success, this method requires
a deep understanding of the geometry of the problem and a clever choice of specialization. For this
reason, in this paper we consider a different type of specialization in which the components of the base
locus are allowed to collide together. We explain it in the next section.

Sometimes it is convenient to use the exact sequence (2.1) not only when H is an hyperplane, but
also with H of higher codimension. In [BO08, Section 5], Brambilla and Ottaviani used this approach
to obtain a different proof of the classification of the Alexander-Hirschowitz Theorem. We will borrow
this technique to prove some of our results in Section 3.

2.3. Collapsing points. In this section we recall the specialization method we use to prove Theo-
rem 2.5. We refer to [GM19, Remark 20 and Proposition 21] or [Gal19, Construction 10] for more de-
tails.

Remark 2.8. Let V be a smooth variety of dimension n. We consider a general scheme of type (2n+1)
on V and we let it collapse to one component, i.e., we let all the points of its support approach the
same point q ∈ V from general directions. The result of such a limit is a scheme supported at q,
containing the triple point 3q with the following property: its restriction to a general line L containing
q is a triple point of L, but there are

(
n+1
2

)
lines through q such that the restriction is a 4-tuple point

on each of these special lines is a 4-ple point. We call it a triple point with
(
n+1
2

)
tangent directions. If

we call E the exceptional divisor of Blq V , then these tangent directions correspond to simple points
{tij | 0 ≤ i < j ≤ n} of E.

Example 2.9. Since the limit is a local construction, we work out an example on A2. Let ∆ be a
complex disk around the origin. Let Y = A2×∆ and Yt = A2×{t} for t ∈ ∆. Fix a point q ∈ Y0 and
three general maps σ1, σ2, σ3 : ∆ → Y such that σ1(t), σ2(t), σ3(t) are general points of Yt for t 6= 0
and σ1(0) = σ2(0) = σ3(0) = q. For every t 6= 0, let

Xt = 2σ1(t) + 2σ2(t) + 2σ3(t) ⊂ Yt
be a general scheme of fat points of type (23). We are interested in the limit X0 := limt→0Xt. For
every t 6= 0 the ideal IXt contains a plane cubic Ct, consisting of the union of three lines, hence the
limit C0 belongs to IX0(3). Actually, one can show that IX0(3) = 〈C0〉. By [Gal19, Proposition 13], X0

strictly contains a 3-fat point but does not contain a 4-fat point. In order to completely understand
its structure, we look at the blow-up µ : Ỹ → Y of Y at the point q with exceptional divisor W .
Let σ̃i : ∆ → Ỹ be the map corresponding to σi. We want to stress that, since the sections σi are
general, σ̃1(0), σ̃2(0), σ̃3(0) are three general points of W . See Figure 1. If we set Ỹt = µ−1(Yt), then

Ỹt ∼= Yt ∼= A2 for every t 6= 0, but the special fiber Ỹ0 has two irreducible components. We write
Ỹ0 ∼= W ∪ Blq Y0. If we call E = W ∩ Blq A2, then E ∼= P1 is the exceptional divisor of Blq A2.
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Let ĨX0 be the ideal consisting of all the strict transforms of elements of IX0 . Since X0 ) 3q, then

ĨX0(3)|E ( H0OE(3). Indeed, ĨX0(3)|E is the system of cubics of E containing the general scheme of
fat points 2σ̃1(0) + 2σ̃2(0) + 2σ̃3(0). There is exactly one such cubic, consisting of the union of the
three lines 〈σ̃i(0), σ̃j(0)〉, which cut three simple points tij = R ∩ 〈σ̃i(0), σ̃j(0)〉 on E. We regard X0

as the fat point 3q together with three infinitely near simple points corresponding to t12, t13, t23.

Figure 1. The collision of three 2-fat points as described in Example 2.9.

It is crucial to notice that the tangent directions described in Remark 2.8 are not in general position:
for every choice of a set of indices I ⊂ {0, . . . , n} of cardinality s ≥ 3, the points {tij | i, j ∈ I and i < j}
are contained in a linear space Ps−2 ⊂ E.

Example 2.10. Consider the collision of four 2-fat points in A3. We proceed in the same way as in
Example 2.9 and we see that ĨX0(3)|W is the system of cubics of W ∼= P3 containing a general scheme

of fat points of type (24) supported, say, at p0, p1, p2, p3. Its base locus consists of the
(
4
2

)
= 6 lines

joining each pair of points. These six lines cut six simple points tij = E ∩ 〈pi, pj〉 on E ∼= P2, but
they are not in general position. For instance, all the three points t12, t13 and t23 belong to the line
E ∩ 〈p1, p2, p3〉. The six points are in the configuration described in Figure 2.

Figure 2. Six points in a star configurations, i.e., as intersections of a four general lines.

For later purpose we need to check that, even if the infinitely near points are not in general position,
they are not too special. More precisely, we show that they impose independent conditions on low
degree divisors of the exceptional divisor E.

Lemma 2.11. Let n ≥ 2. Let p0, . . . , pn ∈ Pn be general points and let E be a hyperplane such that
{p0, . . . , pn} ∩ E = ∅. Define tij := 〈pi, pj〉 ∩ E and set

X := {tij | 1 ≤ i < j ≤ n}.
Then the linear systems L2n−1(X), L3n−1(X) and L3n−1(2X) on E are non-special.

Proof. The system L2n−1(X) is non-special by [GM19, Lemma 25]. As a consequence, L3n−1(X) is

non-special as well, so we focus on L3n−1(2X). We argue by induction on n.
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• Case n = 2. It is enough to observe that every linear system on P1 is non-special.
• Case n ≥ 3. For i ∈ {0, . . . , n}, let Hi := 〈pj | j 6= i〉 = Pn−1. By induction hypothesis,
L3n−1(2X)|Hi∩E = L3n−2(TrH(2X)) = 0, so Hi ∩ E is a fixed component of L3n−1(2X). That is

impossible, because elements of L3n−1(2X) have degree 3. �

The proof of Theorem 2.5 will be presented in Section 4 and it depends on a series of lemmas. In
order to make improve the readability of the proof and to better understand the strategy, we collect
them in the following section.

3. Lemmata

In this section we prove a series of technical results that will lead to the proof of our main theorem.
At a first glance, these lemmas might seem unrelated; therefore, the reader might want to come back
to them after having read the proof of Theorem 2.5 in Section 4. We prove these intermediate results
with the inductive approach and the degeneration technique illustrated in Sections 2.2 and 2.3. The
specializations need to be chosen carefully to satisfy several arithmetic properties: in order to make
our proofs easier to read, we moved some elementary but tedious computations to Appendix B.

Notation 3.1. For any m,n ∈ N, we define

r∗(m,n) :=

⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
r∗(m,n) :=

⌊(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌋
k∗(m,n) := r∗(m,n)−m− n− 1 k∗(m,n) := r∗(m,n)−m− n− 1

The first two results will help us dealing with linear systems whose base locus has simple points in
special position. We denote by Bs(L) the base locus of a linear system L.

Proposition 3.2. Let V be a smooth variety and let L be a linear system on V . Let ϕ : V 99K P(L∨)
be the rational map induced by L. Fix a point x ∈ V and suppose that there exists a nonempty
Zariski-open subset U ⊂ V such that

(1) x 6∈ Bs(L), and
(2) x ∈ Bs(L ⊗ I2p,V ) for every p ∈ U .

Then every element of L ⊗ I2p,V is singular at x.

Proof. Let W := ϕ(V ). Let p ∈ U and let q := ϕ(p) be a general point of W . We can write its
tangent space as an intersection of hyperplanes TqW = H1 ∩ . . . ∩ Hs. For any i ∈ {1, . . . , s}, let
Di := ϕ∗(Hi) ∈ L. By construction, each Di is singular at p, i.e., Di ∈ L ⊗ I2p,V . By hypothesis (2),

x ∈ Di for every i ∈ {1, . . . , s}. Therefore, by hypothesis (1), we deduce that ϕ(x) ∈ Tq(W ). By
[FOV99, Proposition 4.6.11], W is a cone and ϕ(x) belongs to its vertex.

Now, take B ∈ L ⊗ I2p,V . Then ϕ(B) is tangent to W at q and, therefore, it passes through ϕ(x).

Since the latter is in the vertex of W , ϕ(B) is singular at ϕ(x); hence B is singular at x. �

Observe that in the proof of Proposition 3.2 we proved something stronger: not only L ⊗ I2p,V is

singular at x, but W is a cone and ϕ(x) belongs to its vertex.

Lemma 3.3 ([CGG07, Lemma 1.9]). Let V be a projective variety and let H ⊂ V be a positive
dimensional subvariety. Let X ⊂ V be a scheme of fat points and let Y ⊂ H be a set of points. Let L
be a linear system on V . Assume that

(1) Y imposes independent conditions on L(X)|H , and
(2) dimL(X)− dim(L(X)⊗ IH) ≥ #Y .

Then Y imposes independent on L(X). In particular, if dimL(X) ≤ #Y and L(X) ⊗ IH = 0, then
L(X + Y ) = 0.

The rest of the section is devoted to proving the building blocks of Theorem 2.5. In order to help
the reader to follow the structure of the proofs, we will add explicit numerical examples.

Lemma 3.4. If 1 ≤ m ≤ n, then L3,3m×n(3, 2k
∗(m,n)) is regular.
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Proof. We proceed by induction on m. The case m = 1 is Lemma 3.5. Assume that m ≥ 2. Let
D ⊂ Pm×Pn be a divisor of bidegree (1, 0) and consider a scheme of fat points X of type (3, 2k

∗(m,n))

such that X ∩D is of type (3, 2k
∗(m−1,n)). Note that

vdimL3,3m×n(X)

=

(
m+ 3

3

)(
n+ 3

3

)
−
(
m+ n+ 2

2

)
− (m+ n+ 1)

(⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
− (m+ n+ 1)

)

≥ (m+ n+ 1)2 −
(
m+ n+ 2

2

)
− (m+ n) =

(
m+ n+ 1

2

)
− (m+ n) > 0. (3.1)

As explained in Section 2.2, it is enough to prove that residue and trace of L3,3m×n(X) with respect to
D are regular:

• Trace. The trace of X on D ∼= Pm−1×Pn is a general scheme of fat points of type (3, 2k
∗(m−1,n));

hence, L3,3(m−1)×n(TrD(X)) is regular by induction.

• Residue. The residue ResD(X) is of type (2k
∗(m,n)−k∗(m−1,n)+1, 1k

∗(m−1,n)) where ResD(X)∩D
is general of type (2, 1k

∗(m−1,n)) on D. The system L2,3m×n(ResD(X)) has non-negative virtual

dimension by Lemma B.3, and L2,3m×n(2k
∗(m,n)−k∗(m−1,n)+1) is regular by Lemma 3.6. In order

to prove that L2,3m×n(ResD(X)) is regular, we need to show that the k∗(m− 1, n) simple points

on D impose independent conditions on L2,3m×n(2k
∗(m,n)−k∗(m−1,n)+1). We apply Lemma 3.3 by

showing that

k∗(m− 1, n) ≤ dimL2,3m×n(2k
∗(m,n)−k∗(m−1,n)+1)− dimL1,3m×n(1, 2k

∗(m,n)−k∗(m−1,n)). (3.2)

Note that L1,3m×n(1, 2k
∗(m,n)−k∗(m−1,n)) = 0 by Lemma B.2 and [BBC12, Theorem 3.1]. Hence

inequality (3.2) follows by Lemma B.3. �

Lemma 3.5. If n is a positive integer, then L3,31×n(3, 2k
∗(1,n)) is regular.

Proof. We proceed by induction on n. The case n = 1 is checked directly with the support of an
algebra software; see Appendix A. Assume n ≥ 2. Let D ⊂ P1×Pn be a divisor of bidegree (0, 1) and

consider the scheme of fat points X of type (3, 2k
∗(1,n)) such that X∩D is general of type (3, 2k

∗(1,n−1))

on D. Note that vdimL3,31×n(X) ≥ 0 by (3.1). As explained in Section 2.2, it is enough to prove that

residue and trace of L3,31×n(X) with resepct to D are regular.

• Trace. The trace of X on D ∼= P1×Pn−1 is a general scheme of fat points of type (3, 2k
∗(1,n−1))

and L3,31×(n−1)(3, 2
k∗(1,n−1)) is regular by induction.

• Residue. The residue ResD(X) is of type (21+k∗(1,n)−k∗(1,n−1), 1k
∗(1,n−1)), where ResD(X)∩D

is general of type (2, 1k
∗(1,n−1)) on D. By symmetry and by Lemma B.3, the virtual dimension

of L3,21×n(21+k∗(1,n)−k∗(1,n−1), 1k
∗(1,n−1)) is non-negative. The system L3,21×n(21+k∗(1,n)−k∗(1,n−1))

is regular by [BBC12, Theorem 3.1]. Hence, in order to prove that L3,21×n(ResD(X)) is regular,
we need to show that the additional k∗(1, n− 1) simple points lying on D impose independent

conditions on L3,21×n(21+k∗(1,n)−k∗(1,n−1)). We apply Lemma 3.3 by showing that

k∗(1, n− 1) ≤ dimL3,21×n(21+k∗(1,n)−k∗(1,n−1))− dimL3,11×n(1, 2k
∗(1,n)−k∗(1,n−1)). (3.3)

Note that L3,11×n(1, 2k
∗(1,n)−k∗(1,n−1)) = 0 by Lemma B.4 and [BBC12, Theorem 3.1]. Hence

(3.3) follows by symmetry by Lemma B.3. �

Lemma 3.6. If 1 ≤ m ≤ n, then L2,3m×n(21+k∗(m,n)−k∗(m−1,n)) is regular.

Proof. In order to simplify the notation, we set f(m,n) := 1 + k∗(m,n) − k∗(m − 1, n). We argue
by induction on m. The case m = 1 follows by [Abr08, Theorem 4.2]. Assume that m ≥ 2 and

let D ⊂ Pm × Pn be a divisor of bidegree (1, 0). Let X be a scheme of fat points of type (2f(m,n))

such that X ∩ D is general of type (2f(m−1,n)) on D. Note that we are allowed to do it because

f(m− 1, n) ≤ f(m,n) by Lemma B.5(3). Note that vdimL2,3m×n(X) ≥ 0 by Lemma B.6. Hence, it is

enough to prove that residue and trace of L2,3m×n(X) with respect to D are regular.
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• Trace. The trace is a general scheme of fat points on D ∼= Pm−1 × Pn of type (2f(m−1,n)) and

L2,3(m−1)×n(2f(m−1,n)) is regular by induction.

• Residue. The residue ResD(X) is a scheme of fat points of type (2f(m,n)−f(m−1,n), 1f(m−1,n)),

where ResD(X) ∩D is a general scheme of type (1f(m−1,n)) on D, which has positive virtual
dimension by Lemma B.8. By Lemma B.7(1),

f(m,n)− f(m− 1, n) ≤

⌊
(m+ 1)

(
n+3
3

)
m+ n+ 1

⌋
−m,

hence the linear system L1,3m×n(2f(m,n)−f(m−1,n)) is regular by [BCC11, Theorem 2.3]. In order

to prove that L1,3m×n(ResD(X)) is regular, we need to show that the f(m− 1, n) simple points

on D impose independent conditions on L1,3m×n(2f(m,n)−f(m−1,n)). We apply Lemma 3.3 by
showing that

f(m− 1, n) ≤ dimL1,3m×n(2f(m,n)−f(m−1,n))− dimL0,3m×n(2f(m,n)−f(m−1,n)). (3.4)

Note that L0,3m×n(2f(m,n)−f(m−1,n)) ∼= L3n(2f(m,n)−f(m−1,n)) = 0 by Lemma B.5(4) and Theo-
rem 1.1. Hence, (3.4) follows by Lemma B.8. �

Lemma 3.7. If n ≥ m ≥ 2, then dimL3,3m×n(4, 2k∗(m,n)) = 0.

Proof. We argue by induction on m. By Lemma 3.8, L3,32×n(4, 2k∗(2,n)) = 0. Assume that m ≥ 3 and

take a divisor D ⊂ Pm × Pn of bidegree (1, 0). Let X be a scheme of fat points of type (4, 2k∗(m,n))

such that X ∩D is general of type (4, 2k∗(m−1,n)) on D. As explained in Section 2.2, it is enough to

prove that residue and trace of L3,3m×n(X) are zero.

• Trace. The trace of X on D is a general scheme of type (4, 2k∗(m−1,n)) and we know that

L3,3(m−1)×n(4, 2k∗(m−1,n)) = 0 by induction hypothesis.

• Residue. The residue of X with respect to D is of type (3, 2k∗(m,n)−k∗(m−1,n), 1k∗(m−1,n)) where

X ∩ D is general of type (3, 1k∗(m−1,n)) on D. The residue linear system is expected to be

zero by Lemma B.9. The linear system L2,3m×n(3, 2k∗(m,n)−k∗(m−1,n)) is regular by Lemma 3.9.
Now, we need to prove that the extra k∗(m − 1, n) simple points on D impose enough con-

ditions to make L2,3m×n(ResD(X)) to be zero. By Lemma 3.3, it is enough to prove that

L1,3m×n(2, 2k∗(m,n)−k∗(m−1,n)) = 0. Thanks to [BCC11, Theorem 2.3], we just need to show that

1 + k∗(m,n)− k∗(m− 1, n) ≥
⌈

m+ 1

m+ n+ 1

(
n+ 3

3

)⌉
+m,

and this is done in Lemma B.10. �

Lemma 3.8. If n is a positive integer, then dimL3,32×n(4, 2k∗(2,n)) = 0.

Proof. We argue by induction on n. By a software computation, we check dimL3,32×1(4, 2
k∗(2,1)) = 0;

see Appendix A. Assume n ≥ 2 and consider a divisor D ⊂ P2 × Pn of bidegree (0, 1). Let X be a

scheme of fat points of type (4, 2k∗(2,n)) such that X ∩ D is general of type (4, 2k∗(2,n−1)) on D. As

explained in Section 2.2, it is enough to prove that the residue and trace of L3,32×n(X) are zero.

• Trace. The trace of X on D is a general scheme of type (4, 2k∗(2,n−1)) and the linear system

L3,32×(n−1)(4, 2
k∗(2,n−1)) is zero by induction hypothesis.

• Residue. The residue of X with respect to D is a scheme of type (3, 2k∗(2,n)−k∗(2,n−1), 1k∗(2,n−1))

where X ∩D is general of type (3, 1k∗(2,n−1)). The residue linear system is expected to be zero

by Lemma B.11. By Lemma 3.16, L3,22×n(3, 2k∗(2,n)−k∗(2,n−1)) is regular. Now, we need to prove

that the k∗(2, n − 1) simple points on D impose enough conditions to make L3,22×n(ResD(X))

zero. By Lemma 3.3 it is enough to show that dimL3,12×n(21+k∗(2,n)−k∗(2,n−1)) = 0. By [BCC11,
Theorem 2.3], the latter is guaranteed by

1 + k∗(2, n)− k∗(2, n− 1) ≥
⌈

10(n+ 1)

n+ 3

⌉
+ n

which holds by Lemma B.12. �
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Lemma 3.9. Let n ≥ m ≥ 2. Then L2,3m×n(3, 2k∗(m,n)−k∗(m−1,n)) is regular.

Proof. In order to simplify the notation, set

`(m,n) := k∗(m,n)− k∗(m− 1, n).

We proceed by induction on m. The case m = 2 is solved by Lemma 3.10. Assume m ≥ 3 and consider
a divisor D ⊂ Pm×Pn of bidegree (1, 0). Let X be a scheme of fat points of type (3, 2`(m,n)) such that

X ∩D is general of type (3, 2`(m−1,n)) on D. We are allowed to do it because `(m − 1, n) ≤ `(m,n)
by Lemma B.5(1). As explained in Section 2.2, it is enough to prove that the residue and the trace of

L2,3m×n(X) with respect to D are regular.

• Trace. The trace of X on D is a general scheme of fat points of type (3, 2`(m−1,n)) and

L2,3(m−1)×n(3, 2`(m−1,n)) is regular by inductive hypothesis.

• Residue. The residue ResD(X) is a scheme of fat points of type (21+`(m,n)−`(m−1,n), 1`(m−1,n)),

where ResD(X) ∩ D is a general scheme of type (2, 1`(m−1,n)). The system L1,3m×n(ResD(X))
has non-negative virtual dimension by Lemma B.13. Lemma B.7(2) shows that

1 + `(m,n)− `(m− 1, n) ≤
⌊

m+ 1

m+ n+ 1

(
n+ 3

3

)⌋
−m,

thus L1,3m×n(21+`(m,n)−`(m−1,n)) is regular by [BCC11, Theorem 2.3]. In order to prove that

L1,3m×n(ResD(X)) is regular, we need to prove that the `(m−1, n) general simple points impose

independent conditions on L1,3m×n(21+`(m,n)−`(m−1,n)). We apply Lemma 3.3 by showing that

`(m− 1, n) ≤ dimL1,3m×n(21+`(m,n)−`(m−1,n))− dimL0,3m×n(1, 2`(m,n)−`(m−1,n)). (3.5)

Note that L0,3m×n(1, 2`(m,n)−`(m−1,n)) ∼= L3n(1, 2`(m,n)−`(m−1,n)) = 0 by Lemma B.5(2) and The-
orem 1.1. Hence, (3.5) follows by Lemma B.13. �

Lemma 3.10. Let n ≥ 2. Then L2,32×n(3, 2`(2,n)) is regular.

Proof. We proceed by induction on n. We check the case n = 2 by a software computation; see
Appendix A. Let n ≥ 3 and set

s(n) :=
n(n+ 3)

2
∈ N.

Let D ⊂ P2 × Pn be a bidegree (1, 0) divisor and let X be a scheme of fat points of type (3, 2`(2,n))

such that X ∩ D is of type (3, 2s(n)). Note that we are allowed to do it because s(n) ≤ `(2, n) by
Lemma B.15(1). As explained in Section 2.2, it is enough to prove that the residue and trace of

L2,32×n(X) with respect to D are regular.

• Trace. The trace on X is a general scheme of fat points of type (3, 2s(n)) on D and the linear

system L2,31×n(3, 2s(n)) is regular by Lemma 3.11.

• Residue. The residue ResD(X) is a scheme of fat points of type (21+`(2,n)−s(n), 1s(n)) where

X ∩D is general of type (2, 1s(n)) on D. The system L1,3m×n(ResD(X)) has non-negative virtual
dimension by Lemma B.16. By Lemma B.14, we have

1 + `(2, n)− s(n) ≤
⌊

3

n+ 3

(
n+ 3

3

)⌋
− 2,

hence L1,32×n(21+`(2,n)−s(n)) is regular by [BCC11, Theorem 2.3]. Now we need to show that the

simple points on D impose independent conditions on L1,32×n(21+`(2,n)−s(n)). By Lemma 3.3, it
is enough to show that

s(n) ≤ dimL1,32×n(21+`(2,n)−s(n))− dimL0,32×n(1, 2`(2,n)−s(n)). (3.6)

Note that L0,32×n(1, 2`(2,n)−s(n)) ∼= L3n(1, 2`(2,n)−s(n)) = 0 by Lemma B.15(2) and Theorem 1.1.
Hence, (3.6) follows by Lemma B.16. �

Lemma 3.11. If n ≥ 2, then L2,31×n(3, 2s(n)) is regular. In particular, it is zero.
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Proof. Note that

vdimL2,31×n(3, 2s(n)) = 3

(
n+ 3

3

)
−
(
n+ 3

2

)
− n(n+ 2)(n+ 3)

2
= 0.

We have to prove that it is indeed zero. We proceed by induction on n. A software computation
shows that dimL2,31×2(3, 2

s(2)) = dimL2,31×3(3, 2
s(3)) = 0; see Appendix A . Assume that n ≥ 4. Let

A ∼= P1 × Pn−2 be a subvariety defined by two general forms of bidegree (0, 1). Let X = XA +X◦ be

a scheme of fat points of type (3, 2s(n)), where

XA is a scheme of type (3, 2s(n−2)) with general support on A ∼= P1 × Pn−2;
X◦ is a general scheme of type (22n+1) with support outside A.

As explained in Section 2.2, we consider the exact sequence

0→ L2,31×n(A+X)→ L2,31×n(X)→ L2,31×(n−2)(TrAX).

Then it is enough to prove that both the left-most and the right-most linear systems are zero. By
induction hypothesis, L2,31×(n−2)(TrAX) = 0, while L2,31×n(A+X) = 0 by Lemma 3.12 �

Lemma 3.12. Let n ≥ 4. Let A ∼= P1×Pn−2 be a subvariety of P1×Pn defined by two general forms
of bidegree (0, 1). Let X = XA + X◦ be a scheme of fat points as in the proof of Lemma 3.11. Then

dimL2,31×n(A+X) = 0.

Proof. We proceed by induction on n. A software computation shows that the statement holds for
n = 4 and n = 5; see Appendix A. Assume that n ≥ 6. Let B ∼= P1 × Pn−2 be another subvariety
defined by two general forms of bidegree (0, 1). Consider a specialization Y = YA∩B + YA + YB + Y◦
of X, where

YA∩B is a scheme of type (3, 2s(n−4)) with general support on A ∩B ∼= P1 × Pn−4

YA is a scheme of type (22n−3) with general support on A, outside B;
YB is a scheme of type (22n−3) with general support on B, outside A;
Y◦ is a scheme of type (24) with general support outside A ∪B.

Now it is enough to prove that L2,31×n(A+ Y ) = 0. Consider the exact sequence

0→ L2,31×n(A+B + Y )→ L2,31×n(A+ Y )→ L2,31×(n−2)(A ∩B + TrB Y ).

• Trace. By induction hypothesis, L2,31×(n−2)(A ∩B + TrB Y ) = 0.

• Residue. By Lemma 3.13, L2,31×n(A+B + Y ) = 0. �

Lemma 3.13. Let n ≥ 6. Let A,B ∼= P1×Pn−2 be subvarieties of P1×Pn, each defined by two general
forms of bidegree (0, 1). Let Y = YA∩B + YA + YB + Y◦ be a scheme of fat points as in the proof of

Lemma 3.12. Then L2,31×n(A+B + Y ) = 0.

Proof. We proceed by induction on n. A software computation shows that our statement holds for
n = 6 and n = 7; see Appendix A. Assume that n ≥ 8. Let C ∼= P1 × Pn−2 be another subvariety
defined by two general forms of bidegree (0, 1). We consider the specialization Z = ZA∩B∩C +ZA∩B +
ZA∩C + ZB∩C + ZA + ZB + ZC of Y , where

ZA∩B∩C is a scheme of type (3, 2s(n−6)) with general support on A ∩B ∩ C ∼= P1 × Pn−6;
ZA∩B is a scheme of type (22n−7) with general support on A ∩B ∼= P1 × Pn−4, outside C;
ZA∩C is a scheme of type (22n−7) with general support on A ∩ C ∼= P1 × Pn−4, outside B;
ZB∩C is a scheme of type (22n−7) with general support on B ∩ C ∼= P1 × Pn−4, outside A;
ZA is a scheme of type (24) with general support on A ∼= P1 × Pn−2, outside B ∪ C;
ZB is a scheme of type (24) with general support on B ∼= P1 × Pn−2, outside A ∪ C;
ZC is a scheme of type (24) with general support on C ∼= P1 × Pn−2, outside A ∪B.

Then it is enough to prove that L2,31×n(A+B + Z) = 0. Consider the exact sequence

0→ L2,31×n(A+B + C + Z)→ L2,31×n(A+B + Z)→ L2,31×(n−2)(A ∩ C +B ∩ C + TrC Z).

• Trace. By induction hypothesis, L2,31×(n−2)(A ∩ C +B ∩ C + TrC Z) = 0.

• Residue. The system L2,31×n(A+B + C + Z) is zero by Lemma 3.14. �
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Lemma 3.14. Let n ≥ 8. Let A,B,C ∼= P1 × Pn−2 be subvarieties of P1 × Pn, each defined by two
general forms of bidegree (0, 1). Let Z = ZA∩B∩C +ZA∩B +ZA∩C +ZB∩C +ZA +ZB +ZC be a scheme

of fat points as in the proof of Lemma 3.13. Then L2,31×n(A+B + C + Z) = 0.

Proof. We proceed by induction on n. A software computation shows that the statement holds for
n = 8 and n = 9; see Appendix A. Assume that n ≥ 10. Let E ∼= P1 × Pn−2 be another subvariety
defined by two general forms of bidegree (0, 1). Let W = WA∩B∩C∩E+WA∩B∩E+WA∩C∩E+WB∩C∩E+
WA∩E +WB∩E +WC∩E be a specialization of Z such that

WA∩B∩C∩E is a scheme of type (3, 2s(n−8)) with general support on A ∩B ∩ C ∩ E ∼= P1 × Pn−8;
WA∩B∩E is a scheme of type (22n−11) with general support on A ∩B ∩ E ∼= P1 × Pn−6;
WA∩C∩E is a scheme of type (22n−11) with general support on A ∩ C ∩ E ∼= P1 × Pn−6;
WB∩C∩E is a scheme of type (22n−11) with general support on B ∩ C ∩ E ∼= P1 × Pn−6;
WA∩E is a scheme of type (24) with general support on A ∼= P1 × Pn−4;
WB∩E is a scheme of type (24) with general support on B ∼= P1 × Pn−4;
WC∩E is a scheme of type (24) with general support on C ∼= P1 × Pn−4;

WA∩B∩C is a scheme of type (22n−11) with general support on A ∩B ∩ C;
WA∩B is a scheme of type (24) with general support on A ∩B ∼= P1 × Pn−4;
WA∩C is a scheme of type (24) with general support on A ∩ C ∼= P1 × Pn−4;
WB∩C is a scheme of type (24) with general support on B ∩ C ∼= P1 × Pn−4.

Then it is enough to prove that L2,31×n(A+B + C +W ) = 0. Consider the exact sequence

0→ L2,31×n(A+B + C + E +W )→ L2,31×n(A+B + C +W )→ L2,31×(n−2)((A+B + C) ∩ E + TrEW ).

• Trace. By induction hypothesis, L2,31×(n−2)((A+B + C) ∩ E + TrEW ) = 0.

• Residue. The system L2,31×n(A+B+C+E+W ) is a subsystem of L2,31×n(A+B+C+E) which
is zero because the ideal of A+B + C + E is generated in bidegree (0, 4). �

Example 3.15 (Lemma 3.11, Lemma 3.12, Lemma 3.13, Lemma 3.14 for n = 10). We show that

L2,31×10(3, 2
65) = 0. Let A ∼= P1 × P8 be a subvariety defined by two general forms of bidegree (0, 1).

Let X = XA +X◦ be a scheme of type (3, 265) where

XA is of type (3, 244) with general support on A, indeed s(8) = 44;
X◦ is general of type (221).

Let B,C be other two general subvarieties of P1 × P10, each one defined by two general forms of
bidegree (0, 1). We consider a series of specializations of the scheme X: we describe them as union of
distinct components, each one with general support in the space indicated by the diagrams in Figure 3.

By using a series of Castelnuovo exact sequence, we obtain the following chain of inequalities

dimL2,31×10(X) ≤ dimL2,31×10(A+X) + dimL2,31×8(TrA(X))

≤
(

dimL2,31×10(A+B + Y ) + dimL2,31×8(A ∩B + TrB(Y ))
)

+ dimL2,31×8(TrA(X))

≤
(

dimL2,31×10(A+B + C + Z) + dimL2,31×8(A ∩ C +B ∩ C + TrC(Z))
)

+ dimL2,31×8(A ∩B + TrB(Y )) + dimL2,31×8(TrA(X))

≤
(

dimL2,31×10(A+B + C + E +W ) + dimL2,31×8(A ∩ E +B ∩ E + C ∩ E + TrE(W ))
)

+ dimL2,31×8(A ∩ C +B ∩ C + TrC(Z)) + dimL2,31×8(A ∩B + TrB(Y )) + dimL2,31×8(TrA(X)).

In each step of the latter chain of inequalities, we may assume that the linear systems obtained from
the traces on P1 × P8 are known to be equal to zero by induction. Hence, we are left with proving
that L2,31×10(A + B + C + E + W ) = 0. This follows for the straightfoward observation that the ideal

of A ∪B ∪ C ∪E is generated by forms in bidegree (0, 4) and, therefore, L2,31×10(A+B + C +E) = 0.

Lemma 3.16. If n ≥ 2, then L3,22×n(3, 2k∗(2,n)−k∗(2,n−1)) is regular.
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Figure 3. The specialization used in Example 3.15

Proof. In order to shorten the notation, we set

b(n) := k∗(2, n)− k∗(2, n− 1).

We proceed by induction on n. A software computation shows that L3,22×2(3, 2
b(2)) is regular; see

Appendix A. Assume that n ≥ 3. Let D ⊂ P2 × Pn be a general divisor of bidegree (0, 1) and let

X = XD +X◦ be a scheme of fat points of type (3, 2b(n)) such that

XD is a scheme of type (3, 2b(n−1)) with general support on D ∼= P2 × Pn−1;

X◦ is a scheme of type (2b(n)−b(n−1)) with general support outside D.

As explained in Section 2.2, it is enough to prove that residue and trace of L3,22×n(Y ) with respect to
D are regular.

• Trace. The trace TrD(X) is a general scheme of type (3, 2b(n−1)) on D ∼= P2 × Pn−1 and

L3,22×(n−1)(3, 2
b(n−1)) is regular by induction.

• Residue. The residue ResD(X) is a scheme of fat points of type (21+b(n)−b(n−1), 1b(n−1)) such

that ResD(X) ∩ D is general of type (2, 1b(n−1)) on D and L3,12×n(ResD(X)) is regular by
Lemma 3.17. �

Lemma 3.17. Let n ≥ 3. Let D ⊂ P2×Pn be a general divisor of bidegree (0, 1) and let Y be a scheme

of fat points of type (21+b(n)−b(n−1), 1b(n−1)) such that Y ∩D is a general scheme of type (2, 1b(n−1))

on D. Then L3,12×n(Y ) is regular.

Proof. Set v(n) := vdimL3,12×n(Y ) and let P ⊂ P2×Pn be a set of v(n) general simple points. In order

to prove the statement, it suffices to show that L3,12×n(Y + P ) = 0. We argue by induction on n. The
cases n ∈ {3, 4, 5} are checked by an explicit software computation; see Appendix A. Now assume that
n ≥ 6. By Lemma B.17,

b(n)− b(n− 1) = b(n− 3)− b(n− 4),
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so it makes sense to specialize some of the base points to a subvariety of codimension 3. Let A ⊂
P2×Pn be the subvariety defined by the vanishing of 3 general bidegree (0, 1) forms. We consider the
specializations Z = ZD∩A + ZA + ZD of Y and and Q = QA +Q◦ of P , where

ZA is a scheme of type (2b(n−3)−b(n−4)) on A ∼= P2 × Pn−3, outside D;

ZD∩A is a scheme of type (2, 1b(n−4)) general points on A ∩D;
ZD is a set of b(n− 1)− b(n− 4) general points on D, outside A;
QA is a set of v(n− 3) general points on A, outside D;
Q◦ is a set of v(n)− v(n− 3) general points outside A.

Such specialization is possible by Lemma B.17 and Lemma B.18. Now, it is enough to prove that
L3,12×n(Z +Q) = 0. Consider the exact sequence

0→ L3,12×n(A+ Z +Q)→ L3,12×n(Z +Q)→ L3,12×(n−3)(TrA(Z +Q)).

Then it is enough to prove the left-most and the right-most linear systems are zero.

• The trace TrA(Z+Q) = ZA+ZD∩A+QA: the linear system L3,12×(n−3)(ZA+ZD∩A) is regular by

induction and its dimension is exactly the cardinality of QA; hence, L3,12×(n−3)(TrA(Z+Q)) = 0.

• By Lemma 3.18, L3,12×n(A+ Z +Q) = 0.

�

Lemma 3.18. Let n ≥ 6. In the notation of the proof of Lemma 3.17, let D ⊂ P2 × Pn be a general
divisor of bidegree (0, 1) and let A ⊂ P2×Pn be the subvariety defined by 3 general bidegree (0, 1) forms.

Let Z and Q be schemes of fat points as in the proof of Lemma 3.17. Then dimL3,12×n(A+Z+Q) = 0.

Proof. We proceed by a triple-step induction on n. The cases n ∈ {6, 7, 8} are checked by an explicit
software computation; see Appendix A. Assume that n ≥ 9. Let B ⊂ P2 × Pn be a subvariety
defined by 3 general bidegree (0, 1) forms. We consider a specialization W of Z and R of Q such that
W = WA∩B +WA∩B∩D +WA∩D +WD and R = RA∩B +RA +R◦ where

WA∩B is a scheme of type (2b(n−6)−b(n−7)) on A ∩B ∼= P2 × Pn−6, outside D;

WA∩B∩D is a scheme of type (2, 1b(n−7)) on A ∩B ∩D ∼= P2 × Pn−7;
WA∩D is a set of 10 points on A ∩D, outside B;
WD is a set of 10 points on D, outside A ∪B;

RA∩B is a set of v(n− 6) points on A ∩B, outside D;
RA is a set of v(n− 3)− v(n− 6) points on A, outside B ∪D;
R◦ is a set of v(n)− v(n− 3) points outside A ∪B ∪D.

Consider

0→ L3,12×n(A+B +W +R)→ L3,12×n(A+W +R)→ L3,12×(n−3)((A ∩B) + TrB(W +R)).

It is enough to show that the left-most and right-most linear system are zero.

• By Lemma B.17 and Lemma B.18, the linear system L3,12×(n−3)((A∩B) + TrB(W +R)) is zero

by induction.
• The linear system L3,12×n(A+B+W +R) is contained in the linear system L3,12×n(A+B) which

is zero because the ideal of A ∪B is generated in bi-degree (0, 2). �

Example 3.19 (Lemma 3.16, Lemma 3.17, Lemma 3.18 for n = 8). We show that L3,22×8(3, 2
29) is

regular, i.e., dimL3,22×8(3, 2
29) = 65. Let D be a general divisor of bidegree (0, 1) and let X be a scheme

of type (3, 229) such that X ∩D is general of type (3, 226). By Castelnuovo exact sequence

65 ≤ dimL3,22×8(X) ≤ dimL3,12×8(ResD(X)) + L3,22×7(TrD(X)). (3.7)

We assume to know that L3,22×7(TrD(X)) is regular, i.e., dimL3,22×7(TrD(X)) = 45. The residue Y :=

ResD(X) is a scheme of type (24, 126) such that Y ∩D is general of type (2, 126). Since vdimL3,12×8(Y ) =

20, we consider a set of twenty general points P . We want to prove that dimL3,12×8(Y + P ) = 0. Let
A,B be two subvarieties of codimension 3 defined by general forms of bidegree (0, 1). We consider a
series of specializations of the scheme Y +P : we describe them as union of distinct components, each
one with general support in the space indicated by the diagrams in Figure 4.
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Figure 4. The specialization used in Example 3.19

By using a series of Castelnuovo exact sequences, we obtain the following chain of inequalities

dimL3,12×8(Y + P ) ≤ dimL3,12×8(Z +Q) ≤ dimL3,12×8(A+ Z +Q) + dimL3,12×5(TrA(Z +Q))

≤
(

dimL3,12×8(A+B +W +R) + dimL3,12×5((A ∩B) + TrB(W +R)
)

+ dimL3,12×5(TrA(Z +Q)).

We assume that at each step of the chain of inequalities the traces on P2 × P5 are known to be zero.
Hence, we are left with checking that dimL3,12×8(A+B+W+R) = 0 which holds by the straightforward

observation that the ideal of A ∪B is generate in bidegree (0, 2) and therefore dimL3,12×8(A+B) = 0.

4. Proof of theorem 2.5

We are now ready to prove our main theorem.

Notation 4.1. Let p be a point in Pm×Pn and let T = {t1, . . . , tr} be a set of points in the exceptional
divisor of Blp(Pm × Pn). We denote by (m[T ]) the type of a 0-dimensional scheme Z ⊂ Pm × Pn

supported at p, such that:

• mp ⊂ Z ( (m+ 1)p;
• if D ∈ IZ is a divisor of Pm × Pn then the strict transform of D in Blp(Pm × Pn) cuts the

exceptional divisor E in a divisor of degree m in E passing through the points t1, . . . , tr.

Without loss of generality, we may assume that n ≥ m. Moreover, the case m = 1 is proved by
[AB13, Theorem 1.2], so we may assume that n ≥ m ≥ 2. As we recalled in Remark 2.6, it is enough
to prove our statement for r ∈ {r∗(m,n), r∗(m,n)}.

Let X ⊂ Pm×Pn be a general scheme of fat points of type (2r) and let X0 be the specialization of X

when m+n+ 1 of the r double points collide together as explained in Remark 2.8. Let N :=
(
m+n+1

2

)
and let T = {t1, . . . , tN} be the set of the infinitely near points. If S is a subset of T , we will denote

by L3,3m×n(3[S]) the linear system of bidegree (3, 3) divisors containing the triple point and whose

strict transform contains S. In order to prove that L3,3m×n(X) is nonspecial it is enough to prove that

L3,3m×n(X0) is nonspecial. By generality, we write

L3,3m×n(X0) = L3,3m×n(3[T ], 2r−m−n−1),

where T is a set of N :=
(
m+n+1

2

)
tangent directions to the triple point, in the special position

described by Remark 2.8. Observe that L3,3m×n(3, 2r−m−n−1) is regular by Lemma 3.4, so we only

need to prove that T = {t1, . . . , tN} impose independent conditions to L3,3m×n(3, 2r−m−n−1). Assume
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by contradiction that L3,3m×n(3[T ], 2r−m−n−1) is special, i.e., there exists i ∈ {1, . . . , N − 1} such that

ti+1 ∈ Bs(L3,3m×n(3[t1, . . . , ti], 2
r−m−n−1).

Define

h := min
{
a ∈ N | L3,3m×n(3[t1, . . . , ti+1], 2

a) is special
}
.

Let q be the point of support of the component of X0 of multiplicity 3 and let E ∼= Pm+n−1 be the
exceptional divisor of the blow-up Blq(Pm × Pn).

Claim 1. h ≥ 1.

Proof of Claim 1. It is enough to show that T imposes independent conditions on the strict transform
L on X of the linear system L3,3m×n(3). In order to do so, we apply Lemma 3.3:

• The hypothesis Lemma 3.3(1) is satisfied because T imposes independent conditions on L|E ,
by Lemma 2.11.
• Note that the sublinear space of divisors of L which contain the exceptional divisor E is the

strict transform of L3,3m×n(4) on Blq(Pm × Pn). Hence, in order to check that Lemma 3.3(2) is
verified we need to prove that

dimL3,3m×n(3)− dimL3,3m×n(4) ≥
(
m+ n+ 1

2

)
.

This is checked in Lemma B.1. �

By definition of h, we have that L2,d2×n(3[t1, . . . , ti+1], 2
h−1) is non-special. In particular,

ti+1 6∈ Bs(L3,3m×n(3[t1, . . . , ti], 2
h−1)) and ti+1 ∈ Bs(L3,3m×n(3[t1, . . . , ti], 2

h)).

By Proposition 3.2, every element of L3,3m×n(3[t1, . . . , ti], 2
h) is singular at ti+1. In particular, the

general element of L3,3m×n(3[T ], 2h) is singular at ti+1 and, by monodromy, it is singular at each point

of T . In other words, the restriction of the strict transform of L3,3m×n(3[T ], 2h) to E is a subsystem of
the linear system of cubics on E singular at T , which is zero by Lemma 2.11. We deduce that

L3,3m×n(3[T ], 2h) ⊂ L3,3m×n(4, 2h).

By Lemma 3.7, we conclude that

L3,3m×n(3[T ], 2h) = 0. (4.1)

Now, in both cases r ∈ {r∗(m,n), r∗(m,n)} we get a contradiction:

• if r = r∗ and vdimL3,3m×n(3[T ], 2r−m−n−1) > 0, then (4.1) contradicts the fact that the actual
dimension is at least the virtual dimension;
• if r = r∗ and vdimL3,3m×n(3[T ], 2r−m−n−1) ≤ 0, then (4.1) contradicts the assumption that

L3,3m×n(3[T ], 2r−m−n−1) is special.
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Appendix A. Computations with algebraic software

We used induction to prove several results in Section 3. In this appendix we show how to check the
base cases with a straightforward interpolation, using the Algebra software Macaulay2. The complete
code can be found in the ancillary file of the arXiv submission or on the webpage of the second author.

Fixed positive integers a, b,m, n, we consider the monomial basis B of the vector space of forms of
bidegree (a, b) in the bigraded coordinate ring S of Pm × Pn, i.e.,

S = QQ[x_0..x_m] ** QQ[y_0..y_n];

B = first entries super basis({a,b},S).

Sometimes we deal with linear subspaces of La,bm×n whose base locus contains a union of general
subspaces defined by bidegree (0, 1) forms. In this case we assume that such forms are chosen among
the coordinates of Pm × Pn and we use as B the monomial basis of the homogeneous part in bidegree
(a, b) of the ideal defining the subspace. For example, in the case of Lemma 3.14, the base locus
contains the union of three general codimension-2 subspaces defined by forms of bidegree (0, 1); hence,

A1 = sub(ideal(y_0,y_1),S);

A2 = sub(ideal(y_2,y_3),S);

A3 = sub(ideal(y_4,y_5),S);

B = first entries super basis({a,b},intersect({A1,A2,A3}));

Now we consider the element in the span of B with generic coefficients, i.e.,

C = QQ[c_0..c_(#B-1)];

R = C[x_0..x_m]**C[y_0..y_n];

F = sum for i to #B-1 list c_i*sub(B_i,R).

At this point, we impose the conditions given by the scheme of fat points in the base locus. The
scheme of fat points is defined by two attributes: a matrix P whose columns are the coordinates of
the points supporting the scheme and a list of integers M giving the type of the scheme. Hence, we
obtain a system of linear equations in the ci’s whose solution is exactly the vector space we want to
compute. Therefore, we just need to compute the rank of the matrix V of the coefficients.

V = sub(sub(diff(matrix {for j to #B-1 list C_j},

transpose diff(symmetricPower(M_0-1,vars(R)),F)),

for i to m+n+1 list R_i => P_0_i),QQ);

for j from 1 to #M-1 do (

V = V || sub(sub(diff(matrix {for j to #B-1 list C_j},
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transpose diff(symmetricPower(M_j-1,vars(R)),F)),

for i to m+n+1 list R_i => P_j_i),QQ);

);

Appendix B. Arithmetic computations

Here we collect some arithmetic properties that we use in the paper. For the convenience of the
reader, we recall here the definition of the constants that we used.

r∗(m,n) :=

⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
r∗(m,n) :=

⌊(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌋
k∗(m,n) := r∗(m,n)−m− n− 1 k∗(m,n) := r∗(m,n)−m− n− 1

f(m,n) := 1 + k∗(m,n)− k∗(m− 1, n) `(m,n) := k∗(m,n)− k∗(m− 1, n)

s(n) :=
n(n+ 3)

2
b(n) := k∗(2, n)− k∗(2, n− 1)

v(n) := 10(n+ 1)− (n+ 3)(1 + b(n)− b(n− 1))− b(n− 1)

Lemma B.1. If m,n ∈ N, then dimL3,3m×n(3)− dimL3,3m×n(4) ≥
(
m+n+1

2

)
.

Proof. A direct computation shows that a j-fat point imposes independent conditions on La,bm×n for
any a, b ≥ j − 1. Therefore, we only need to check that(

m+ 3

3

)(
n+ 3

3

)
−
(
m+ n+ 2

2

)
−
(
m+ 3

3

)(
n+ 3

3

)
+

(
m+ n+ 3

3

)
≥
(
m+ n+ 1

2

)
.

Such inequality is equivalent to

(m+ n+ 2)(m+ n+ 1)

(
m+ n+ 3

6
− 1

2

)
≥ (m+ n+ 1)(m+ n)

2

⇔ m+ n+ 2

6
≥ 1

2
⇔ m+ n ≥ 1. �

Lemma B.2. Let 2 ≤ m ≤ n. Then

k∗(m,n)− k∗(m− 1, n) ≥
⌈

m+ 1

m+ n+ 1

(
n+ 3

3

)⌉
+m.

Proof. First we bound

k∗(m,n)− k∗(m− 1, n)−
⌈

m+ 1

m+ n+ 1

(
n+ 3

3

)⌉
−m

=

⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
− (m+ n+ 1)−

⌈(
m+2
3

)(
n+3
3

)
m+ n

⌉
+ (m+ n)−

⌈
m+ 1

m+ n+ 1

(
n+ 3

3

)⌉
−m

≥
(
m+3
3

)(
n+3
3

)
m+ n+ 1

− (m+ n+ 1)−
(
m+2
3

)(
n+3
3

)
m+ n

− 1 + (m+ n)− m+ 1

m+ n+ 1

(
n+ 3

3

)
− 1−m

=

(
n+ 3

3

)(m+3
3

)
(m+ n)−

(
m+2
3

)
(m+ n+ 1)− (m+ 1)(m+ n)

(m+ n)(m+ n+ 1)
−m− 3.

Let

A(m,n) :=

(
n+ 3

3

)((
m+ 3

3

)
(m+ n)−

(
m+ 2

3

)
(m+ n+ 1)− (m+ 1)(m+ n)

)
− (m+ 3)(m+ n)(m+ n+ 1).

We need to show that A(m,n) ≥ 0. We distinguish two cases.
If m ≥ 9, then we consider A(m,n)−A(m,n− 1) ∈ C[m][n], which equals(
1

3
m2 +

1

3
m

)
n3 +

(
1

6
m3 +m2 +

5

6
m

)
n2 +

(
1

2
m3 +

2

3
m2 − 11

6
m− 6

)
n+

1

3
m3 − 2m2 − 19

3
m.
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Since m ≥ 9, all the coefficients are positive and so A(m,n) ≥ A(m,n−1). In particular, since m ≤ n,
we have that

A(m,n) ≥ A(m,m) =
5

36
m6 +

11

12
m5 +

71

36
m4 − 31

12
m3 − 127

9
m2 − 19

3
m ≥ 0.

Assume now that m ∈ {2, . . . , 8}. The polynomial A(m,n) ∈ C[m][n] has positive leading coefficient.
It is easy to check that A(m,n) ≥ 0 for n ≥ N(m), where

N(m) =

{
3 if m = 2

2 if m ∈ {3, . . . , 8}.

Since m ≤ n, the only remaining case is (m,n) = (2, 2), which is checked directly. �

Lemma B.3. If m ≥ 2, then vdimL2,3m×n(2k
∗(m,n)−k∗(m−1,n)+1) ≥ k∗(m− 1, n).

Proof. We can bound

vdimL2,3m×n(2k
∗(m,n)−k∗(m−1,n)+1)− k∗(m− 1, n)

=

(
m+ 2

2

)(
n+ 3

3

)
− (m+ n+ 1)

(
k∗(m,n) + 1

)
+ (m+ n)k∗(m− 1, n)

=

(
m+ 2

2

)(
n+ 3

3

)
− (m+ n+ 1)

(⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
−m− n

)
+ (m+ n)

(⌈(
m+2
3

)(
n+3
3

)
m+ n

⌉
−m− n

)

=

(
m+ 2

2

)(
n+ 3

3

)
− (m+ n+ 1)

⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
+ (m+ n)

⌈(
m+2
3

)(
n+3
3

)
m+ n

⌉
+m+ n

≥
(
m+ 2

2

)(
n+ 3

3

)
−
(
m+ 3

3

)(
n+ 3

3

)
−m− n+

(
m+ 2

3

)(
n+ 3

3

)
+m+ n = 0. �

Lemma B.4. If n ≥ 2, then vdimL3,11×n(1, 2k
∗(1,n)−k∗(1,n−1)) ≤ 0.

Proof.

vdim L3,11×n(1, 2k
∗(1,n)−k∗(1,n−1))

= 4(n+ 1)− 1− (n+ 2)

(⌈
4
(
n+3
3

)
n+ 2

⌉
− (n+ 2)−

⌈
4
(
n+2
3

)
n+ 1

⌉
+ (n+ 1)

)

≤ 4n+ 3− (n+ 2)

(
4
(
n+3
3

)
n+ 2

− (n+ 2)−
4
(
n+2
3

)
n+ 1

− 1 + (n+ 1)

)

= 4n+ 3− 4

(
n+ 3

3

)
+ 4

(n+ 2)2n

6
+ 2(n+ 2) = −4

3
n2 +

4

3
n+ 3 < 1. �

Lemma B.5. If n ≥ m ≥ 2, then

`(m,n)− `(m− 1, n) ≥ (n+ 3)(n+ 2)

6
+ 2. (B.1)

In particular:

(1) `(m− 1, n) ≤ `(m,n),

(2) vdimL3n(1, 2`(m,n)−`(m−1,n)) ≤ 0,
(3) f(m− 1, n) ≤ f(m,n) and

(4) vdimL3n(2f(m,n)−f(m−1,n)) ≤ 0.

Proof. We need to prove that⌊ (
m+3
3

)(
n+3
3

)
(m+ n+ 1)

⌋
− (m+ n+ 1)−

⌊ (
m+2
3

)(
n+3
3

)
(m+ n+ 1)

⌋
+ (m+ n)− (n+ 3)(n+ 2)

6
− 2 ≥ 0.
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The left-hand-side is bigger or equal than(
m+3
3

)(
n+3
3

)
(m+ n+ 1)

− 1− (m+ n+ 1)−
(
m+2
3

)(
n+3
3

)
(m+ n+ 1)

+ (m+ n)− (n+ 3)(n+ 2)

6
− 2

=
A(m,n)

12(m+ n+ 1)
,

where

A(m,n) =
(
m2 + 3m

)
n3 +

(
6m2 + 16m

)
n2 +

(
11m2 + 23m− 48

)
n+ 6m2 − 42m− 48.

For m ≥ 8, by Descartes’ rule of signs, the univariate polynomial A(m,n) ∈ C[m][n] has no positive
root and we deduce that A(m,n) ≥ 0. For 2 ≤ m ≤ 7, we can directly check that the polynomial
A(m,n) is positive for n ≥ 2. This completes the proof of (B.1).

From (B.1), we clearly get that `(m− 1, n) ≤ `(m,n). Moreover,

vdimL3n(1, 2`(m,n)−`(m−1,n)) =

(
n+ 3

3

)
− 1− (n+ 1)(`(m,n)− `(m− 1, n))

≤
(
n+ 3

3

)
− 1−

(
n+ 3

3

)
− 2(n+ 1) ≤ 0.

Note that

f(m,n) = k∗(m,n)− k∗(m− 1, n) ≥ k∗(m,n)− k∗(m− 1, n)− 1 = `(m,n)− 1.

f(m,n) = k∗(m,n)− k∗(m− 1, n) ≤ k∗(m,n) + 1− k∗(m− 1, n) = l(m,n) + 1.

Therefore, from (B.1), we obtain

f(m,n)− f(m,n) ≥ l(m,n)− 1− `(m− 1, n)− 1 ≥ (n+ 3)(n+ 2)

6
(B.2)

and consequently

vdimL3n(2f(m,n)−f(m−1,n)) =

(
n+ 3

3

)
− (n+ 1)(f(m,n)− f(m− 1, n))

≤
(
n+ 3

3

)
−
(
n+ 3

3

)
= 0. �

Lemma B.6. If m ≥ 2, then vdimL2,3m×n(2f(m,n)) ≥ 0.

Proof.

vdim L2,3m×n(2f(m,n))

=

(
m+ 2

2

)(
n+ 3

3

)
− (m+ n+ 1)

(⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
−

⌈(
m+2
3

)(
n+3
3

)
m+ n

⌉)

≥
(
m+ 2

2

)(
n+ 3

3

)
−
(
m+ 3

3

)(
n+ 3

3

)
− (m+ n) +

m+ n+ 1

m+ n

(
m+ 2

3

)(
n+ 3

3

)
= −

(
m+ 2

3

)(
n+ 3

3

)
−m− n+

m+ n+ 1

m+ n

(
m+ 2

3

)(
n+ 3

3

)
=

1

m+ n

(
m+ 2

3

)(
n+ 3

3

)
−m− n =

A(m,n)

36(m+ n)

where

A(m,n) =
(
m3 + 3m2 + 2m

)
n3 +

(
6m3 + 18m2 + 12m− 36

)
n2+(

11m3 + 33m2 − 50m
)
n+ 6m3 − 18m2 + 12m.

By Descartes’ rule of sign, the univariate polynomial A(m,n) has no positive roots for n ≥ m ≥ 2
and, in particular, A(m,n) > 0. �
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Lemma B.7. If n ≥ m ≥ 2, then

2 + `(m,n)− `(m− 1, n) ≤
⌊

m+ 1

m+ n+ 1

(
n+ 3

3

)⌋
−m. (B.3)

As a consequence, we obtain that:

(1) f(m,n)− f(m− 1, n) ≤
⌊

m+1
m+n+1

(
n+3
3

)⌋
−m;

(2) 1 + `(m,n)− `(m− 1, n) ≤
⌊

m+1
m+n+1

(
n+3
3

)⌋
−m.

Proof. Note that (1) follows from (B.3) because f(m,n)− f(m− 1, n) ≤ 2 + `(m,n)− `(m− 1, n) by
(B.2), while (2) is trivial. Hence, we only have to prove (B.3), i.e.,

2 + k∗(m,n)− 2k∗(m− 1, n) + k∗(m− 2, n) ≤

⌊
(m+ 1)

(
n+3
3

)
m+ n+ 1

⌋
−m.

I.e.,

2 +

⌊(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌋
− (m+ n+ 1)− 2

⌊(
m+2
3

)(
n+3
3

)
m+ n

⌋
+ 2(m+ n)

+

⌊(
m+1
3

)(
n+3
3

)
m+ n− 1

⌋
− (m+ n− 1)−

⌊
(m+ 1)

(
n+3
3

)
m+ n+ 1

⌋
−m ≤ 0.

The left-hand-side is smaller or equal to

2 +

(
m+3
3

)(
n+3
3

)
m+ n+ 1

− (m+ n+ 1)−2

(
m+2
3

)(
n+3
3

)
m+ n

+ 2 + 2(m+ n)

+

(
m+1
3

)(
n+3
3

)
m+ n− 1

− (m+ n− 1)−
(m+ 1)

(
n+3
3

)
m+ n+ 1

+ 1

=
A(m,n)

18(m+ n)(m+ n− 1)(m+ n+ 1)

with

A(m,n) =
(
−3m2 − 3m

)
n4 +

(
−2m3 − 18m2 − 16m+ 90

)
n3

+
(
−12m3 − 33m2 + 249m

)
n2 +

(
−22m3 + 252m2 + 4m− 90

)
n+ 78m3 − 78m.

We regard at A(m,n) as a polynomial in C[m][n].

• For m ≥ 12, by Descartes’ rule of signs, the univariate polynomial A(m,n) has at most one
positive root. It is immediate to check that A(m, 0) > 0 and A(m,m) < 0, i.e., such unique
positive root is in the interval (0,m). Since m ≤ n, we deduce that A(m,n) ≤ 0.
• For 2 ≤ m ≤ 11, since the leading term of the univariate polynomial A(m,n) is negative, we

have that A(m,n) ≤ 0 for n ≥ N(m) where

N(m) =


5 if m = 2;

4 if m = 3;

3 if m ∈ {4, 5, 6, 7, 8};
2 if m ∈ {9, 10, 11}.

Since n ≥ m, the only remaining cases are (m,n) ∈ {(2, 2), (2, 3), (2, 4), (3, 3)} where the
statement is checked directly. �

Lemma B.8. If n ≥ m ≥ 2, then vdimL1,3m×n(2f(m,n)−f(m−1,n)) ≥ f(m− 1, n).

Proof. We have to prove that

(m+1)

(
n+ 3

3

)
−(m+n+1)(k∗(m,n)−2k∗(m−1, n)+k∗(m−2, n))−k∗(m−1, n)+k∗(m−2, n) ≥ 0.
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The left-hand-side is

(m+ 1)

(
n+ 3

3

)
− (m+ n+ 1)

(⌈(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌉
− (m+ n+ 1)− 2

⌈(
m+2
3

)(
n+3
3

)
m+ n

⌉
+ 2(m+ n)

+

⌈(
m+1
3

)(
n+3
3

)
m+ n− 1

⌉
− (m+ n− 1)

)
−

⌈(
m+2
3

)(
n+3
3

)
m+ n

⌉
+ (m+ n) +

⌈(
m+1
3

)(
n+3
3

)
m+ n− 1

⌉
− (m+ n− 1)

≥ (m+ 1)

(
n+ 3

3

)
− (m+ n+ 1)

((
m+3
3

)(
n+3
3

)
m+ n+ 1

+ 1− (m+ n+ 1)− 2

(
m+2
3

)(
n+3
3

)
m+ n

+ 2(m+ n)

+

(
m+1
3

)(
n+3
3

)
m+ n− 1

+ 1− (m+ n− 1)

)
−
(
m+2
3

)(
n+3
3

)
m+ n

− 1 + (m+ n) +

(
m+1
3

)(
n+3
3

)
m+ n− 1

− (m+ n− 1)

=
A(m,n)

36(m+ n)(m+ n− 1)
,

where

A(m,n) =
(
3m2 + 3m

)
n4 +

(
2m3 + 18m2 + 16m− 72

)
n3

+
(
12m3 + 33m2 − 195m

)
n2 +

(
22m3 − 198m2 − 4m+ 72

)
n− 60m3 + 60m.

We consider A(m,n) as a polynomial in C[m][n].

• for m ≥ 9, by Descartes’ rule of signs, the univariate polynomial A(m,n) has a unique positive
root; moreover, it is immediate to check that A(m, 0) < 0 while A(m,m) > 0 and, therefore,
such unique positive root is in the interval (0,m). Since n ≥ m, we deduce that A(m,n) ≥ 0;
• for 2 ≤ m ≤ 8, the univariate polynomial A(m,n) is positive for n ≥ N(m) where

N(m) =


4 if m = 2;

3 if m ∈ {3, 4};
2 if m ∈ {5, 6, 7, 8, 9}.

Therefore, the only cases left are (m,n) ∈ {(2, 2), (2, 3)} where the statement is checked di-
rectly. �

Lemma B.9. Let n ≥ m ≥ 2. Then vdimL2,3m×n(3, 2k∗(m,n)−k∗(m−1,n)) ≤ k∗(m− 1, n).

Proof. We need to show that(
m+ 2

2

)(
n+ 3

3

)
−
(
m+ n+ 2

2

)
− (m+ n+ 1)

(⌊(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌋
− (m+ n+ 1)

−

⌊(
m+2
3

)(
n+3
3

)
m+ n

⌋
+ (m+ n)

)
−

⌊(
m+2
3

)(
n+3
3

)
m+ n

⌋
+ (m+ n) ≤ 0.

The left-hand-side is smaller or equal to(
m+ 2

2

)(
n+ 3

3

)
−
(
m+ n+ 2

2

)
− (m+ n+ 1)

((
m+3
3

)(
n+3
3

)
m+ n+ 1

− 1− (m+ n+ 1)

−
(
m+2
3

)(
n+3
3

)
m+ n

+ (m+ n)

)
−
(
m+2
3

)(
n+3
3

)
m+ n

+ 1 + (m+ n)

=
−m2 − 2mn− n2 + 3m+ 3n+ 4

2
.

Let A(m,n) = −m2 + (−2n+ 3)m − n2 + 3n + 4 ∈ C[n][m]. By Descartes’ rule of signs, for n ≥ 4,
the univariate polynomial A(m,n) has no positive roots and we deduce that A(m,n) ≤ 0. In the
remaining cases (m,n) ∈ {(2, 2), (2, 3), (3, 3)}, the statement is checked directly. �

Lemma B.10. Let n ≥ m ≥ 2. Then

1 + k∗(m,n)− k∗(m− 1, n) ≥
⌈

m+ 1

m+ n+ 1

(
n+ 3

3

)⌉
+m.
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Proof. We need to show that

1 +

⌊(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌋
− (m+ n+ 1)−

⌊(
m+2
3

)(
n+3
3

)
m+ n

⌋
+ (m+ n)−

⌈
m+ 1

m+ n+ 1

(
n+ 3

3

)⌉
−m ≥ 0.

The left-hand-side is bigger or equal to

1 +

(
m+3
3

)(
n+3
3

)
m+ n+ 1

− 1− (m+ n+ 1)−
(
m+2
3

)(
n+3
3

)
m+ n

+ (m+ n)− m+ 1

m+ n+ 1

(
n+ 3

3

)
− 1−m

=
A(m,n)

36(m+ n)(m+ n+ 1)

where

A(m,n) =
(
3m2 + 3m

)
n4 +

(
2m3 + 18m2 + 16m

)
n3

+
(
12m3 + 33m2 − 15m− 72

)
n2 +

(
22m3 − 54m2 − 184m− 72

)
n− 24m3 − 108m2 − 84m.

• For m ≥ 5, by Descartes’ rule of signs, the univariate polynomial A(m,n) ∈ C[m][n] has at
most one positive root. It is immediate to check that A(m, 0) < 0 while A(m,n) > 0; hence,
such unique positive root is in the interval (0,m). Since n ≥ m, we deduce that A(m,n) ≥ 0.
• For 2 ≤ m ≤ 4, the univariate polynomial A(m,n) is positive for n ≥ 2. �

Lemma B.11. If n ≥ 2, then vdimL3,22×n(3, 2k∗(2,n)−k∗(2,n−1)) ≤ k∗(2, n− 1).

Proof. We need to prove that

10

(
n+ 2

2

)
−
(
n+ 4

4

)
− (n+ 3)

(⌊
10
(
n+3
3

)
n+ 3

⌋
− (n+ 3)−

⌊
10
(
n+2
3

)
n+ 2

⌋
+ (n+ 2)

)

−

⌊
10
(
n+2
3

)
n+ 2

⌋
+ (n+ 2) ≤ 0.

The left-hand-side is smaller or equal to

10

(
n+ 2

2

)
−
(
n+ 4

4

)
− (n+ 3)

(
10
(
n+3
3

)
n+ 3

− 1− (n+ 3)−
10
(
n+2
3

)
n+ 2

+ (n+ 2)

)

−
10
(
n+2
3

)
n+ 2

+ 1 + (n+ 2)

=
−n4 − 10n3 − 35n2 + 22n+ 192

24
.

The latter is negative for n ≥ 2. �

Lemma B.12. Let n ≥ 2. Then 1 + k∗(2, n)− k∗(2, n− 1) ≥
⌈
10(n+1)
n+3

⌉
+ n.

Proof. We need to prove that

1 +

⌊
10
(
n+3
3

)
n+ 3

⌋
− (n+ 3)−

⌊
10
(
n+2
3

)
n+ 2

⌋
+ (n+ 2)−

⌈
10(n+ 1)

n+ 3

⌉
− n ≥ 0.

The left-hand-side is bigger or equal to

1 +
10
(
n+3
3

)
n+ 3

− 1− (n+ 3)−
10
(
n+2
3

)
n+ 2

+ (n+ 2)− 10(n+ 1)

n+ 3
− 1− n =

7n2 − 5n− 18

3(n+ 3)
.

The latter is positive for n ≥ 2. �

Lemma B.13. If n ≥ m ≥ 2, then vdimL1,3m×n(21+`(m,n)−`(m−1,n)) ≥ `(m− 1, n)).

Proof. We need to prove that

(m+ 1)

(
n+ 3

3

)
− (m+ n+ 1) (1 + k∗(m,n)− 2k∗(m− 1, n) + k∗(m− 2, n))

− k∗(m− 1, n) + k∗(m− 2, n) ≥ 0



24 FRANCESCO GALUPPI AND ALESSANDRO ONETO

The left-hand-side is

(m+ 1)

(
n+ 3

3

)
− (m+ n+ 1)

(
1 +

⌊(
m+3
3

)(
n+3
3

)
m+ n+ 1

⌋
− 2

⌊(
m+2
3

)(
n+3
3

)
m+ n

⌋
+

⌊(
m+1
3

)(
n+3
3

)
m+ n− 1

⌋)

−

⌊(
m+2
3

)(
n+3
3

)
m+ n

⌋
+

⌊(
m+1
3

)(
n+3
3

)
m+ n− 1

⌋

≥ (m+ 1)

(
n+ 3

3

)
− (m+ n+ 1)

(
1 +

(
m+3
3

)(
n+3
3

)
m+ n+ 1

− 2

(
m+2
3

)(
n+3
3

)
m+ n

− 2 +

(
m+1
3

)(
n+3
3

)
m+ n− 1

)

−
(
m+2
3

)(
n+3
3

)
m+ n

+

(
m+1
3

)(
n+3
3

)
m+ n− 1

− 1

=
A(m,n)

36(m+ n+ 1)(m+ n− 1)

where

A(m,n) =
(
3m2 + 3m

)
n4 +

(
2m3 + 18m2 + 16m+ 36

)
n3

+
(
12m3 + 33m2 + 129m− 36

)
n2 +

(
22m3 + 126m2 − 76m

)
n

+ 48m3 − 36m2 − 12m

By Descartes’ rule of signs, the univariate polynomial A(m,n) ∈ C[m][n] has no positive roots for
m ≥ 2. Since A(m, 0) ≥ 0, we deduce that A(m,n) ≥ 0 and the statement follows. �

Lemma B.14. Let n ≥ 3. In the notation of Lemma 3.10,

1 + `(2, n)− s(n) ≤
⌊

3

n+ 3

(
n+ 3

3

)⌋
− 2.

Proof. A software computation shows that the claim holds for n ∈ {3, 4}. We assume that n ≥ 5 and
we bound

1+`(2, n)− s(n)−
⌊

3

n+ 3

(
n+ 3

3

)⌋
+ 2 = 3 + k∗(2, n)− k∗(1, n)− (n+ 3)n

2
− (n+ 2)(n+ 1)

2

= 3 +

⌊
10
(
n+3
3

)
n+ 3

⌋
− (n+ 3)−

⌊
4
(
n+3
3

)
n+ 2

⌋
+ (n+ 2)− (n+ 3)n

2
− (n+ 2)(n+ 1)

2

≤ 3 +
5(n+ 2)(n+ 1)

3
− (n+ 3)− 2(n+ 3)(n+ 1)

3
+ 1 + (n+ 2)− (n+ 3)n

2
− (n+ 2)(n+ 1)

2

=
2

3
(5− n) ≤ 0. �

Lemma B.15. Let n ≥ 3. Then

`(2, n)− s(n) ≥

⌈(
n+3
3

)
− 1

n+ 1

⌉
. (B.4)

In particular:

(1) s(n) ≤ `(2, n) and

(2) vdimL3n(1, 2`(2,n)−s(n)) ≤ 0.
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Proof. We directly check that

`(2, n)− s(n)−

⌈(
n+3
3

)
− 1

n+ 1

⌉
= k∗(2, n)− k∗(1, n)− s(n)−

⌈(
n+3
3

)
− 1

n+ 1

⌉

=

⌊
10
(
n+3
3

)
n+ 3

⌋
− (n+ 3)−

⌊
4
(
n+3
3

)
n+ 2

⌋
+ (n+ 2)− s(n)−

⌈
n(n2 + 6n+ 11)

6(n+ 1)

⌉
≥ 5(n+ 2)(n+ 1)

3
− 1− (n+ 3)− 2(n+ 3)(n+ 1)

3
+ (n+ 2)− n(n2 + 6n+ 11)

6(n+ 1)
− 1

=
5n3 + 14n2 − n− 4

6(n+ 1)
,

where the latter is positive for n ≥ 1. �

Lemma B.16. Let n ≥ 3. Then

vdimL1,32×n(21+`(2,n)−s(n)) ≥ s(n). (B.5)

Proof. We need to prove that

3

(
n+ 3

3

)
− (n+ 3) (1 + `(2, n)− s(n))− s(n) ≥ 0.

The left-hand-side is

3

(
n+ 3

3

)
− (n+ 3)

(
1 +

⌊
10
(
n+3
3

)
n+ 3

⌋
− (n+ 3)−

⌊
4
(
n+3
3

)
n+ 2

⌋
+ (n+ 2)

)
+ (n+ 2)

n(n+ 3)

2

≥ 3

(
n+ 3

3

)
− (n+ 3)

(
1 +

10
(
n+3
3

)
n+ 3

− (n+ 3)−
4
(
n+3
3

)
n+ 2

+ 1 + (n+ 2)

)
+ (n+ 2)

n(n+ 3)

2

=
n2 − 5n− 24

6
,

where the latter is positive for n ≥ 8. In the cases 3 ≤ n ≤ 7, (B.5) can be checked directly. �

Lemma B.17. Let n ≥ 3. In the notation of the proof of Lemma 3.16,

b(n)− b(n− 1) =

{
4 n ≡ 1 mod 3;

3 otherwise .

In particular, we deduce that b(n)− b(n− 3) = 10 > 0.

Proof. By definition

b(n) = k∗(2, n)− k∗(2, n− 1) =

⌊
10
(
n+3
3

)
n+ 3

⌋
− (n+ 3)−

⌊
10
(
n+2
3

)
n+ 2

⌋
+ (n+ 2).

Then

b(n)− b(n− 1) =

⌊
10
(
n+3
3

)
n+ 3

⌋
− 2

⌊
10
(
n+2
3

)
n+ 2

⌋
+

⌊
10
(
n+1
3

)
n+ 1

⌋

=

⌊
5(n+ 2)(n+ 1)

3

⌋
− 2

⌊
5(n+ 1)n

3

⌋
+

⌊
5n(n− 1)

3

⌋
Let n = 3m+ 1 for m ∈ Z. Then

b(n)− b(n− 1) = 5(m+ 1)(3m+ 2)− 2

⌊
5(3m+ 2)(3m+ 1)

3

⌋
+ 5(3m+ 1)m =

= 5(m+ 1)(3m+ 2)− 2(15m2 + 15m+ 3) + 5(3m+ 1)m = 4.

Let n = 3m+ 2 for m ∈ Z. Then

b(n)− b(n− 1) = 5(3m+ 4)(m+ 1)− 10(3m+ 2)(m+ 1) +

⌊
5(3m+ 2)(3m+ 1)

3

⌋
=

= 5(3m+ 4)(m+ 1)− 10(3m+ 2)(m+ 1) + (15m2 + 15m+ 3) = 3.
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Let n = 3m for m ∈ Z. Then

b(n)− b(n− 1) =

⌊
5(3m+ 2)(3m+ 1)

3

⌋
− 10(3m+ 1)m+ 5m(3m− 1) =

= (15m2 + 15m+ 3)− 10(3m+ 1)m+ 5m(3m− 1) = 3. �

Lemma B.18. Let n ≥ 4. In the notation of the proof of Lemma 3.16,

v(n)− v(n− 3) =

{
5 for n ≡ 1 mod 3;

8 otherwise.

Proof. By definition,

v(n)− v(n− 3) = 10(n+ 1)− (n+ 3)(1 + b(n)− b(n− 1))− b(n− 1)

− 10(n− 2) + n(1 + b(n− 3)− b(n− 4)) + b(n− 4) =

= 30− 3(1 + b(n)− b(n− 1))− (b(n− 1)− b(n− 4)).

By Lemma B.17, we deduce that, for any n ∈ Z,

b(n)− b(n− 3) =

n∑
i=n−2

(b(i)− b(i− 1)) = 10.

Hence,

v(n)− v(n− 3) =

{
30− 3 · 5− 10 = 5 for n ≡ 1 mod 3;

30− 3 · 4− 10 = 8 otherwise.
�
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