
Degroebnerization and its applications: a new approach for data
modelling.

EXTENDED ABSTRACT FOR MEGA 2021

Michela Ceria, Teo Mora, Andrea Visconti

Abstract

In this work, we propose a new Computer Algebra-based method to give a polynomial model for data. In particular,
we refer to the problem of reverse engineering for gene regulatory networks, giving an alternative to the method proposed
by Laubenbacher and Stigler. We show that, in order to give the required model, which is composed by polynomials in
normal form with respect to the vanishing ideal of the given data points, it is not necessary to compute Gröbner bases
or performing any step of Buchberger reduction. It is possible to recover the required polynomials by means of linear
algebra and combinatorics.

1 Introduction
Gröbner bases’ theory, besides being used in the framework of polynomials systems’ solving, has found applications also
in the data modelling framework.
As an example, in [13], the authors propose a Computer Algebra-based approach to study gene regulatory networks as
dynamical systems, starting from measured data, which are essentially states of n given genes in the networks at different
times. Any state is considered as a point in (Zp)n, where p is a prime. Let X = {P1, ..., PN} the set of such points. In
order to model their data, they want to construct polynomial functions that are in normal form, namely reduced modulo
the ideal I(X) whose variety is given by the points.
They first compute a separator family for X, so they have one polynomial for each point, say Qi, 1 ≤ i ≤ N, such that for
i, j ∈ {1, ...,N}, Qi(P j) = 1 if i = j and Qi(P j) = 0 otherwise. Then, they reduce modulo a Gröbner basis of the ideal of
points I(X) some polynomials they find as linear combinations of separator polynomials.
Using separator polynomials to model data, is something that can be found also in other disciplines. One for all is
Algebraic Statistics. In [11], the authors define the indicator function to represent fractions of full factorial desings. Such
a function is again a combination of separator polynomials.

Recently, a new approach in Computer Algebra has been proposed, that is Degroebnerization [18, 14, 19], which has
been explicitly expressed and endorsed in [17, Vol.3, 40.12,41.15]. Degroebnerization means avoiding Gröbner basis
computation and Buchberger’s reduction as much as possible, leaving their use to the only cases in which it is really
necessary. This is due to the computational intensity of Gröbner bases’ computation. Such a new approach consists then
in finding new ways to solve practical problems that have been originally solved using Gröbner basis computation and
Buchberger’s reduction. Usually, the “new ways” that can be found consist in using linear algebra and combinatorial
methods.
This work places itself in this framework. Indeed, here we show a new, degroebnerized approach to solve the problem
proposed in [13].
After some notation (Section 2) and preliminaries on Laubenbacher-Stigler’s work (Section 3), we recall a combinatorial
method to compute squarefree separator polynomials for a finite set of points (Section 4). Being squarefree, the separators
we find avoid redundant multiplicative factors that present, instead, while using the other separators’ formulas present in
literature [12, 14].
Then, in Section 5, we recall Lundqvist’s formula for normal forms (Proposition 7) and an efficient combinatorial method
to compute a basis for the quotient of the polynomial ring modulo the ideal of points I(X), referring to [5]. Unlike
[13] where all data are intentionally expressed through polynomials, our method completely and intentionally avoids
the computation of any polynomial, depending only on simple comparisons among the coordinates of the points. For
efficiency reasons, it relies on two data structures, namely the point trie [12], to encode information about points and the
Bar Code [1, 3], to encode information on the quotient algebra basis. Using the quotient algebra basis and the given set X,
it is possible to compute the normal form of any polynomial modulo the ideal of points, only via evaluations and matrix
multiplication.
In Section 6, we show how to implement the above combinatorial method and some testing activity.
Finally, in Section 7, we present some perspectives.

1

2 Notation
In this paper, we mainly rely on the notation of [17].
In particular, we denote by P := k[x1, ..., xn] the polynomial ring over the field k, on the n variables {x1, ..., xn}. The
semigroup of terms in the same variables is

T := {xγ1
1 · · · x

γn
n | γ1, ..., γn ∈ N}.

For each element t ∈ T :

• deg(t) =
∑n

i=1 γi is the degree of t;

• degi(t) = γi, 1 ≤ i ≤ n is the i-degree, namely its degree in the variable xi.

A semigroup ordering is a total ordering over T such that it respects multiplication, namely if s, t1, t2 ∈ T , it holds

t1 < t2 ⇒ st1 < st2.

If such an ordering is also a well ordering, then we have a term ordering. We are interested in a specific term or-
dering, namely the lexicographical ordering (Lex for short) <, induced by x1 < ... < xn, defined as follows. Given
t = xγ1

1 · · · x
γn
n , s = xδ1

1 · · · x
δn
n ∈ T , we say that t < s if and only if there is a j ∈ {1, ..., n} such that γ j < δ j and, moreover,

γi = δi, for each j ≤ i ≤ n. Once fixed a term ordering on T , if f ∈ P is a polynomial, we can define (and identify in a
constructive way) its leading term T(f), namely its maximal term with respect to the given ordering.
We call semigroup ideal a subset J ⊆ T that is closed under multiplication by any element of T , namely if t ∈ J then
st ∈ J, for each s ∈ T . On the other hands, a subset N ⊆ T is an order ideal if it is closed under division by terms, namely
if t ∈ N then s ∈ N, for each divisor s of t.
Given an ideal I of P, we can define the set T{I} := {T(g), g ∈ I} and the semigroup ideal of leading terms T(I) :=
{tT(g)| t ∈ T , g ∈ I}. The minimal generating set for T(I) = T{I} is the monomial basis of I and it is denoted by G(I).
Finally the order ideal N(I) := T \ T(I) is called Gröbner escalier of the ideal I. If f ∈ I is a polynomial, we call normal
form of f with respect to I the unique polynomial Nf(f) :=

∑
t∈A ctt, such that A is a basis of P/I as k-vector space and

f − Nf(f) ∈ I. In particular, in this paper, our basis for P/I as k-vector space will be A := N(I), with respect to the
lexicographical ordering.

Given a finite set of simple points X = {P1, ..., PN} ⊂ kn, let us denote by Pi = (a1i, ..., ani), 1 ≤ i ≤ N, the coordinates
of such points and by I(X) the ideal of all polynomials vanishing on X. For 1 ≤ i, j ≤ N, let

ci, j :=
{

0, if i = j
min{h : 1 ≤ h ≤ n, ahi , ah j} otherwise

We define the following Lagrange-like polynomials, that will be building factors for separator polynomials (see [14])

p[ci, j]
i, j =

xci, j − aci, j, j

aci, j,i − aci, j, j
.

We continue recalling some definitions from Graph Theory, following the notation of [12].

Definition 1. We call tree a connected acyclic graph. A rooted tree is a tree where a special vertex (or node) called root
is singled out.

We call level of a vertex the number of edges between the root and such vertex. If v is a vertex different from the
root, and u is the vertex preceding v on the path from the root, then u is the parent of v and v is a child of u. Two vertices
with the same parent are called siblings. The leaves are all vertices u that have no children and a branch in the tree is a
path from the root to a leaf. We consider only trees whose branches have all the same length, namely the same number of
edges composing them.

Definition 2. A trie is a rooted tree in which there is a symbol written on every edge from a fixed alphabet.

We conclude this section with a very quick recap on Bar Codes, basing on [1, 3].
Bar Codes are bidimensional diagrams that can be used to encode some properties of monomial ideals. They have been
proposed for the first time at MEGA 2017 [1], with an application to enumerative combinatorics on stable strongly stable
ideals. In [2, 3, 4, 5] other applications of Bar Codes have been highlighted.

Definition 3. A Bar Code B is a picture composed by segments, called bars, superimposed in horizontal rows, which
satisfies conditions a., b. below. Denote by

• B(i)
j the j-th bar (from left to right) of the i-th row (from top to bottom), 1 ≤ i ≤ n, i.e. the j-th i-bar (or the j-th bar

at level i);

2

• µ(i) the number of bars of the i-th row

• l1(B(1)
j) := 1, ∀ j ∈ {1, 2, ..., µ(1)} the 1−length of the 1-bars;

• li(B
(k)
j), 2 ≤ k ≤ n, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ µ(k) the i-length of B(k)

j , i.e. the number of i-bars lying over B(k)
j

a. ∀i, j, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ µ(i), ∃! j ∈ {1, ..., µ(i + 1)} s.t. B(i+1)
j

lies under B(i)
j

b. ∀i1, i2 ∈ {1, ..., n},
∑µ(i1)

j1=1 l1(B(i1)
j1

) =
∑µ(i2)

j2=1 l1(B(i2)
j2

); we will then say that all the rows have the same length.

Given a finite set of terms M ⊂ T of cardinality m, it is easy to associate a Bar Code BM to M.
Let us first consider a term t = xα1

1 · · · x
αn
n ∈ T and define, for each 1 ≤ i ≤ n, the term πi(t) = xαi

i · · · x
αn
n ∈ T . Of course,

this can be done for all the elements of M, getting n sets

M[i] := πi(M) := {πi(t)|t ∈ M}, for 1 ≤ i ≤ n.

We order M and M[i], 1 ≤ i ≤ n in increasing order with respect to the lexicographical ordering, getting the lists M and
M

[i]
, 1 ≤ i ≤ n. Finally, we define the n × m matrixM, whose rows are exactly the ordered lists M

[i]
, 1 ≤ i ≤ n.

Definition 4. The Bar Code diagram B associated to M (or, equivalently, to M) is a n×m diagram, made by segments s.t.
the i-th row of B, 1 ≤ i ≤ n is constructed as follows:

1. take the i-th row ofM, i.e. M
[i]

2. consider all the sublists of repeated terms, i.e. [πi(t j1), πi(t j1+1), ..., πi(t j1+h)] s.t. πi(t j1) = πi(t j1+1) = ... = πi(t j1+h),
noticing that 0 ≤ h < m

3. underline each sublist with a segment

4. delete the terms of M
[i]

, leaving only the segments (i.e. the i-bars).

We usually label each 1-bar B(1)
j , j ∈ {1, ..., µ(1)} with the term t j ∈ M.

The Bar Code diagram we obtain is the exactly BM , the Bar Code we were looking for.
Conversely, now we see how to associate a set of terms to a Bar Code. In order to do that, it is enough to perform the two
steps below:

B1 take the n-th row, composed by the bars B(n)
1 , ..., B(n)

µ(n). Let l1(B(n)
j) = `(n)

j , for j ∈ {1, ..., µ(n)}. Label each bar B(n)
j

with `(n)
j copies of x j−1

n .

B2 For each i = 1, ..., n−1, 1 ≤ j ≤ µ(n− i + 1) consider the bar B(n−i+1)
j and suppose that it has been labelled by `(n−i+1)

j

copies of a term t. Consider all the (n− i)-bars B(n−i)
j

, ..., B(n−i)
j+h

lying immediately above B(n−i+1)
j ; note that h satisfies

0 ≤ h ≤ µ(n − i) − j. Denote the 1-lengths of B(n−i)
j

, ..., B(n−i)
j+h

by l1(B(n−i)
j

) = `(n−i)
j

,..., l1(B(n−i)
j+h

) = `(n−i)
j+h

. For each

0 ≤ k ≤ h, label B(n−i)
j+k

with `(n−i)
j+k

copies of txk
n−i.

In this work, we focus only on admissible Bar Codes, namely those such that the set M obtained by applying B1 and B2
to B is an order ideal.

3 Reverse engineering: the previous approach
In this section, we recall the main ideas from [13], on how Computer Algebra methods have been used in reverse engi-
neering for gene regulatory networks.
The paper [13] studies the dynamics of a gene regulatory networks. The authors adopt the modeling framework of time-
discrete multi-state dynamical systems [13].
In particular, the system is composed by states (that are our points) whose nodes (the variables) represent the genes. The
states of each node, so the values each variable can take are the elements in Zp, with p prime. The dynamical system is
represented by the function F : (Zp)n → (Zp)n, sending each point to the next one, so representing the transitions among
the states1.
More precisely, if X = {P1, ..., PN} ⊆ (Zp)n are our points, it holds F(Pi) = Pi+1, for i = 1, ...,N−1. We can describe F via
the coordinate functions f j : (Zp)n → Zp, 1 ≤ j ≤ n, so that F(Pi) = (f1(Pi), ..., fn(Pi)), for i = 1, ...,N − 1. Such functions

1The values of the prime p indicate how that state changes at each transition; for instance for p = 3, −1 means decreases, 0 means stability and
+1means increases.

3

are actually polynomial functions. What is done in [13], is to compute separately the functions f j, 1 ≤ j ≤ n, from which
they reconstruct F. In particular, the polynomials they want to find should be in normal form, namely in reduced form
modulo the ideal I(X).
The proposed algorithm is composed of three steps:

• compute a particular solution for f j, 1 ≤ j ≤ n;

• compute a Gröbner basis G of I(X), via Buchberger-Möller algorithm [16], which interpolates on X;

• perform Buchberger reduction on the particular solutions, modulo G.

The particular solution is defined as
N−1∑
i=1

a j,i+2ri(x1, ..., xn),

where ri(x1, ..., xn) =
∏N−1

k=1 p[ci,k]
ik . We can easily note that the polynomials ri form a separator family for our points.

Therefore, we can conclude that what it is needed to be computed is the normal form of separator polynomials.
In the paper [13], the authors also propose their complexity analysis, stating that

In summary, the complexity of the algorithm is

O(n2N2) + O((N3 + N)(log(p))2 + N2n2) + O(n(N − 1))2cN+N−1).

It is quadratic in the number n of variables and exponential in the number N of time points.

4 Squarefree separator polynomials
Let us consider a finite set of simple points X := {P1, ..., PN} ⊂ kn. A family of separator polynomials for X is a set
Q := {Q1, ..,QN} ⊂ P, such that, for i, j ∈ {1, ...,N}, Qi(P j) = 1 if i = j and Qi(P j) = 0 otherwise. Such polynomials
are quite important for data modelling, since they are the “fundamental bricks” for polynomial interpolation. There are
some other approaches to compute them, like Möller algorithm [16, 15] and the formulas in [12, 14]. Möller algorithm
has the drawback of involving the whole Gröbner basis computation, while the formulas in [12, 14] compute separators
polynomials with useless repeated factors. In [6], we propose a new algorithm for computing separator polynomials
without repeated factors.

We recall that (see Section 2), given a finite set of simple points X = {P1, ..., PN} ⊂ kn, with each point denoted by
Pi = (a1i, ..., ani), 1 ≤ i ≤ N, we can define, for 1 ≤ i, j ≤ N,

ci, j :=
{

0, if i = j
min{h : 1 ≤ h ≤ n, ahi , ah j} otherwise

The building factors for separator polynomials are

p[ci, j]
i, j =

xci, j − aci, j, j

aci, j,i − aci, j, j
,

which have been also used in [14] to compute his version of the separators.
In order to avoid repetitions of factors of the formula in [14], we first construct the point trie associated to X [12, 6]. This
is a rooted tree representing the reciprocal relations among the coordinates of the points. It has as many branches (and so
as many leaves) as the points; its nodes are labelled with the indices of the points in X, while the edges are labelled by the
coordinates of the points, with the additional rule that two points share the same path from the root to level i (1 ≤ i ≤ n)
if and only if they share the same coordinates, from the first one to the i-th one.
Note that the point trie can be constructed iteratively on the points, by adding one branch at a time.

Example 5. For the set X := {P1 = (0, 0), P2 = (1, 0), P3 = (0, 1), P4 = (1, 1)}, the point trie is constructed as shown in
Figures 1, 2, 3 and 4.

{1}

{1}

{1}

0

0

Figure 1: Start with P1.

{1, 2}

{1}

{1}

{2}

{2}

0

0

1

0

Figure 2: Add P2.

{1, 2, 3, 4}

{1, 3}

{1} {3}

{2}

{2}

0

0 1

1

0

Figure 3: Add P3.

{1, 2, 3, 4}

{1, 3}

{1} {3}

{2, 4}

{2} {4}

0

0 1

1

0 1

Figure 4: Add P4.
♦

4

The trie is the crucial object allowing us to avoid repetitions. Indeed, via this trie we can know how many coordinates
are shared by two points and so whether some polynomial already vanishes on some point, thus allowing us to avoid a
useless multiplicative factor.
Therefore, in order to construct the separator polynomials we proceed as follows. In the case we have only one point (and
so the point trie has only one branch), the desired polynomial is Q1 = 1 and this is also the basis for our procedure. Indeed,
suppose now to know the separator family {Q1, ...,QN−1} for the set {P1, ..., PN−1} ⊂ X and let us see how to construct
such kind of family for the whole X.
We first add to the trie associated to {P1, ..., PN−1} the new branch associated to PN and we set QN = 1. Then we read the
new branch from the root to the leaf so, in particular, we consider each level j from the first to the n-th and we do this
way:

• let v the node at level j whose label contains N;

• for each sibling node w of v

1. pick an index i in the label of w;

2. update QN as QN · p
[j]
N,i;

• if v is labelled only by the index of N (that is, no points in {P1, ..., PN−1} share the first j coordinates with PN) then,
for each sibling node w and each index i labelling such a node, update Qi as Qi · p

[j]
i,N .

The family of separators associated to X is given by {Q1, ...,QN}, where the polynomials Qi not modified by the above
steps are simply kept from the family associated to {P1, ..., PN−1}.

Example 6. For the set X := {P1 = (0, 0), P2 = (1, 0), P3 = (0, 1), P4 = (1, 1)} of Example 5, the algorithm to compute
squarefree separator polynomials performs this way:

P1 Q1 = 1;

P2 Q2 = p[1]
2,1, Q1 = p[1]

1,2;

P3 Q3 = p[1]
32 p[2]

3,1, Q1 = p[1]
1,2 p[2]

1,3

P4 Q4 = p[1]
4,1 p[2]

4,2, Q2 = p[1]
2,1 p[2]

2,4.

{1, 2, 3, 4}

{1, 3}

{1} {3}

{2, 4}

{2} {4}

0

0 1

1

0 1

Figure 5: The point trie.
In conclusion, Q1 = p[1]

1,2 p[2]
1,3 = (x−1)(y−1),Q2 = p[1]

2,1 p[2]
2,4 = −x(y−1),Q3 = p[1]

32 p[2]
3,1 = −y(x−1),Q4 = p[1]

4,1 p[2]
4,2 = xy. ♦

As explained in [6], the trie can be represented via a n-ary tree structure, which is implemented using pointers. This
way, it can be updated iteratively on the points and the needed number of pointers is minimized.
In our implementation, instead of multiplying the building factors and get a longer polynomial, we limit ourselves at
finding out what are the factors appearing in each Qi. The reason is that, for our application, only evaluating such
polynomials will be needed, so the factors are enough.
The testing activity described in [6, Table 1] has been expandend with new experiments. We report here the average lower
bound (0.01 seconds, for 1024 points in three coordinates) and the average upper bound (6 minutes for 65, 536 points in
four coordinates). The variance is approximately zero, our computations are very reliable.

5 Degroebnerization and the quotient algebra basis: a new approach for nor-
mal forms

As shown in Section 3, for applications, the normal form of the separator polynomials modulo the ideal of the given points
is needed.
Generally, what it is done is to take the set X, compute a separator family Q for it, find a Gröbner basis G for the ideal of
points I(X) and perform Buchberger reduction on the elements in Q modulo G.
We show now how to get the same result without the need of computing G, nor of performing any step of Buchberger
reduction. Our aim is to use Lundqvist’s interpolation approach, taking advantage of point tries and Bar Codes to speed
up the computation. Let us consider the following proposition.

Proposition 7 ([14]). Let X = {P1, ..., PN} be a finite set of simple points, I := I(X) / k[x1, ..., xn] the ideal of points
and N = {t1, ..., tN} ⊂ k[x1, ..., xn] such that [N] = {[t1], ..., [tN]} is a basis for A := k[x1, ..., xn]/I. Then, for each
f ∈ k[x1, ..., xn] we have

Nf(f ,N) = (t1, ..., tN)(N[X]−1)t(f (P1), ..., f (PN))t,

where N[X] is the matrix whose rows are the evaluations of N at the elements of X and Nf(f ,N) is the normal form of f
w.r.t. I(X).

5

The above Proposition 7 shows that, as soon as we have X and a basis of the quotient algebra P/I(X), computing the
normal form of a polynomial modulo I(X) is only a matter of evaluations and linear algebra.
Clearly, if one has a Gröbner basis for I(X) with respect to some term ordering, finding a basis for P/I(X) is trivial, since
one such a basis is the Gröbner escalier of I(X).
Anyway, it is possible to get the lexicographical Gröbner escalier N(X) of I(X) also in a “purely combinatorial” way, that
is, only using comparisons among the coordinates of the points and without needing to compute any polynomial.
The first result in this framework has been given by Cerlienco and Mureddu [7, 8, 9], who proved a bijection between
X and N(X), providing an algorithm to compute N(X). Such algorithm is iterative on X, but it needs recursion on the
variables, leading to a bad complexity: O

(
n2N2

)
, where, as usual N is the number of points and n the number of variables.

An improved alternative has been given by the Lex Game [12], which, making a large use of tries (not only the point trie
described above, but also another trie related to the terms’exponents), improves the complexity to O (nN + N min(N, nr)),
which depends also on r, the maximal number of children of a node in the point trie of X. This last algorithm, despite
being fast, has a crucial drawback: it is not iterative on the points, thing that for applications to data modelling is a great
disadvantage, due to the dynamicity of experiments, which could produce data in different times.
In [5], we present a new algorithm (called Iterative Lex Game, Iter LG for short) that, employing the point trie and a Bar
Code to dynamically store the terms, is more performant than Cerlienco-Mureddu’s algortithm but it is iterative on X. In
particular, the complexity turns out to be O(N2n log(N)) and we think it is the best which can be done, keeping iterativity
on the points. We sketch now the main idea behind the algortithm, referring to [5] for further details.
The term in the escalier corresponding to the first point, P1 ∈ X, is surely t1 = 1. Indeed the ideal associated to P1 is
the maximal ideal I({P1}) = (x1 − a11, ..., xn − an1), this implying that the only term that is never the leading term of any
polynomial in I({P1}) is t1 = 1. As a basis for our algorithm, we construct the point trie associated to P1 (which is a trie
with only one leaf) and the Bar Code associated to {t1} (which is formed by n superimposed bars, one for each variable).
Suppose now to know N({P1, ..., PN−1}) = {t1, ..., tN−1}; we look for the term tN associated to PN in order to get the whole
lexicographical Gröbner escalier N(X).
We first update the point trie associated to {P1, ..., PN−1}, adding the branch associated to PN and keeping track of the level
f , 1 ≤ f ≤ n, where such branch forks from all the others, namely the first level such that the node labelled by the index
N is not labelled by any other index. Let us call v such node. The value f is crucial since it already tells us that x f | tN ,
while x f +1, ..., xn - tN . The fact that x f +1, ..., xn - tN is translated on the Bar Code by saying that at levels f + 1, ..., n, tN is
over the first bar.
The second step is to understand what is the exponent of x f in tN . For it, we need to pick an antecedent point. To find
it, we look at the rightmost sibling node w of v and pick the first label l of w. This gives us a point, Pl ∈ {P1, ..., PN−1},
whose corresponding term tl has already been computed: the exponent of x f in tN , is one more the exponent of x f in tl.
Therefore, we look at the bar under tl at level f and we know that we have to place tN over a bar at level f , just on the
right of that of tl, but, of course, remaining over the first bar at levels f + 1, ..., n. If such a bar does not exist, we construct
it, and this gives us tN as a pure power of x f . Otherwise, we restrict to PN and the points whose corresponding terms are
over such bar and we repeat the procedure, taking care of looking at the new forking level for PN , reading the trie from
level f up and repeating the above steps. In this case tN is not a pure power but it is divided also by some variables smaller
than x f and tN can be retrieved in a finite number of steps.

Example 8. For the set X := {P1 = (0, 0), P2 = (1, 0), P3 = (0, 1), P4 = (1, 1)} of Examples 5 (from which you can read
the point trie for each point) and 6, we compute the basis of the quotient algebra k[x, y]/I(X) via our algorithm, as the
lexicographical Gröbner escalier obtained by considering x < y, and finally we get the normal forms of the separator
polynomials we computed in Example 6.

x2

x1
1
1

Figure 6: Bar Code of P1.

x2

x1
1
1

Figure 7: Red bar for P2.

x2

x1
1
1

x
2

Figure 8: Bar Code of P2.

x2

x1
1
1

x
2

Figure 9: Red bar for P3.
As usual t1 = 1, so the Bar Code is as in Figure 6.

For P2 = (1, 0), we have f = 1 and l = 1. We consider then the red bar in Figure 7 and we see that there is no bar on
the right, we construct it getting t2 = x (see Figure 8).
For P3 = (0, 1), we have f = 2 and l = 1; we look at the red bar in Figure 9 and we see that there is no bar on the right.
Constructing it we get t3 = y (see Figure 10).

x2

x1
1
1

x
2

y
3

Figure 10: Bar Code for P3.

x2

x1
1
1

x
2

y
3

Figure 11: Red bar for P4
(1).

x2

x1
1
1

x
2

y
3

Figure 12: Red bar for P4
(2).

x2

x1
1
1

x
2

y
3

xy
4

Figure 13: Bar Code for P4.

Finally, for P4 = (1, 1), f = 2 and l = 2; this time there is a bar on the right of the red one (see Figure 11). We then restrict
to {P3, P4}, so we get the new forking level to be f = 1 and the new antecedent to be P3. This time, looking at the red bar

6

in Figure 12, we see that there is no bar on the right, so we construct it and we get t4 = xy as in Figure 13.
We can easily note that the separators polynomials are already in normal form, but we check it via Lundqvist’s formula.

First of all, note that N[X] =

[
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

]
and so (N[X]−1)t =

[
1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1

]
. We compute

(1, x, y, xy)(N[X]−1)t = (1 − x − y + xy, x − xy, y − xy, xy)

and note that
(1 − x − y + xy, x − xy, y − xy, xy) = (Q1,Q2,Q3,Q4),

proving that the separator polynomials we found are already in normal form.
♦

6 Implementation and timings for the Gröbner escalier
In this section, we go through the implementation of our algorithm to compute the Gröbner escalier. In particular, we
need to construct the data structure used for implementing the algorithm described more precisely in Section 5.
First of all, a Bar Code can be implemented in C using concatenated objects, implemented using a linked list of data
structures. We need three different lists, namely one containing the terms, one related to the single bars and one containing
the different levels of the Bar Code.
The list related to the single bars (so containing some structures called barNode as elements) contains in its structure the
exponent of the variable related to that bar, a pointer to the bar under it (which is of course NULL if we are considering
the n-th bars), a pointer to the next bar to the right, a pointer to the first term of the bar and a pointer to the last one. The
list related to a level contains the data structures barRow as elements, which, in turn, contain the index of such level, a
pointer to the first bar of this level and a pointer to the following level. A graphical representation of this idea can be
found in Figure 15, which is the implementation of the Bar Code in Figure 14, referring to the set of terms {1, x, y, z}.

x2

x1
1 x y z

Figure 14: Bar Code for {1, x, y, z}.

We can easily note that, for implementation’s convenience, the Bar Code is
reversed (the bars on the top correspond to the maximal variable, while those
on the bottom correspond to the minimal one).

The circles represent the levels, while the rectangles are the bars. The former ones take note - for each term - of the
exponents of the related variable (the variable xi where i = n − j and j is the index of the level we are considering). The
arrows represent the pointers.

Figure 15: How the Bar Code of Figure 14 is implemented.

In addition, we have implemented also an auxiliary structure to keep track of forking levels. It is again a concatenated
list, whose elements are structs called forkNode. Each such struct contains the information about the presence or absence
of a fork, a pointer to the next element of the list, a pointer to the list of all points labelling the same node of the trie and a
pointer to the labels’ lists of the sibling nodes.

Tesing activity has been executed on a machine with an Intel(R) Core(TM) i7-8550U processor 64-bit architecture,
CPU @ 1.80GHz equipped with 8 GB of RAM. The operating system installed on this machine was Linux Mint 19 (Tara)
64 bits.
In our knowledge, the only function computing the Gröbner escalier associated to a finite set of finite points in a com-
binatorial way, is the function nonMonomials of the library pointid.lib in the Software Singular [10], which implements
Cerlienco-Mureddu’s algorithm. Figure 16 indicates the obtained timings, highlighting the advantages, compared to the
aforementioned nonMonomials function.

7

GF(2m) Points Coord Singular Iter LG
24 256 4 1.68s 0.13s
24 256 4 5.01s 0.11s
25 1024 3 16.77s 0.13s
26 4096 3 5m 27.04s 2.18s
25 1024 3 23.06s 0.18s
26 4096 3 6m 9.29s 2.04s
28 65536 3 27h 42m 49m 27s
220 4096 2 - 37.40s

Figure 16: Testing activity for the Iterative Lex Game.

7 Conclusions
In this work, we have proposed a new method to solve the problem proposed in [13], without needing Gröbner bases’
computation.
We aim to continue this work in order to show the advantages of Degroebnerization in a more precise way, by making a
fine complexity analysis comparison between the approach in [13] and ours. Indeed, we think that Laubenbacher-Stigler’s
analysis should be corrected.
Moreover, we aim to use our method also to compute the indicator function as in [11], and compare the performances.

References
[1] Ceria, M., Bar Code for monomial ideals, Journal of Symbolic Computation, Volume 91, March - April 2019, DOI:

10.1016/ j. jsc.2018.06.012, 30-56.

[2] Ceria, M. Bar Code and Janet-like division, available in arxiv as arXiv:1910.03572 [math.CO].

[3] Ceria, M., Bar code: a visual representation for finite set of terms and its applications., Mathematics in Computer
Science, 14(2), 497-513 (2020), online in 2019 doi:10.1007/s11786-019-00425-4

[4] Ceria, M., Bar Code vs Janet tree, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matem-
atiche e Naturali, VOL 97, NO 2 (2019) Doi: 10.1478/AAPP.972A6

[5] Ceria M., Mora T. Combinatorics of ideals of points: a Cerlienco-Mureddu-like approach for an iterative lex game,
available in arxiv as arXiv:1805.09165 [math.AC].

[6] Ceria, M., Mora, T., Visconti, A., Efficient computation of squarefree separator polynomials, In International
Congress on Mathematical Software (pp. 98-104). Springer, Cham, (2018).

[7] Cerlienco L., Mureddu M., Algoritmi combinatori per l’interpolazione polinomiale in dimensione ≥ 2, preprint
(1990).

[8] Cerlienco L., Mureddu M., From algebraic sets to monomial linear bases by means of combinatorial algorithms,
Discrete Math. 139, 73 − 87.

[9] Cerlienco L., Mureddu M., Multivariate Interpolation and Standard Bases for Macaulay Modules, J. Algebra 251
(2002), 686 − 726.

[10] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 4-2-0 — A computer algebra system for polyno-
mial computations. http://www.singular.uni-kl.de (2019).

[11] Pistone, G., Rogantin, M. P., Indicator function and complex coding for mixed fractional factorial designs, Journal
of Statistical Planning and Inference, 138(3), 787-802,(2008).

[12] Felszeghy, B., Rth, B., Rnyai, L., The lex game and some applications, Journal of Symbolic Computation 41(6),
663–681 (2006)

[13] Laubenbacher, R., Stigler, B., A computational algebra approach to the reverse engineering of gene regulatory
networks, Journal of theoretical biology, 229, 4, 523-537, Academic Press.

[14] Lundqvist, S., Vector space bases associated to vanishing ideals of points, Journal of Pure and Applied Algebra
214(4), 309–321 (2010)

8

[15] Marinari, M.G., Möller, H.M., Mora, T., Gröbner bases of ideals defined by functionals with an application to ideals
of projective points, Applicable Algebra in Engineering, Communication and Computing 4(2), 103145 (1993)

[16] Möller, H.M., Buchberger, B., The construction of multivariate polynomials with preassigned zeros, In: European
Computer Algebra Conference. pp. 2431. Springer (1982)

[17] Mora T., Solving Polynomial Equation Systems 4 Vols., Cambridge University Press, I DOI:
10.1017/CBO9780511542831 (2003), II DOI: 10.1017/CBO9781107340954 (2005), III DOI:
10.1017/CBO9781139015998 (2015), IV DOI:10.1017/CBO9781316271902 (2016).

[18] Mora, T. An FGLM-like algorithm for computing the radical of a zero-dimensional ideal. Journal of Algebra and Its
Applications, 17(01) (2018).

[19] Mourrain B. A New Criterion for Normal Form Algorithms. In: Fossorier M., Imai H., Lin S., Poli A. (eds) Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol
1719. Springer, Berlin, Heidelberg (1999)

9

