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Abstract

Rank-2 and rank-3 tensors are almost all identi�able with only few exceptions. We classify

them all together with the dimensions and the structures of all the sets evincing the rank.
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Introduction

Identi�ability of tensors is one of the most active research areas both in pure mathematics and in
applications. The core of the problem is being able to understand if a given tensor T ∈ Cn1+1 ⊗
· · · ⊗ Cnk+1 can be decomposed in a unique way as a sum of pure tensors:

T =

r∑
i=1

v1,i ⊗ · · · ⊗ vk,i,

with vj,i ∈ Cnj+1, for j = 1, . . . , k. Of course the minimum r realizing the above expression is a
crucial value and it is called the rank of T .

From the applied point of view, identi�ability in tensor decomposition arises naturally in numer-
ous areas, we quote as examples Phylogenetics, Quantum Physics, Complexity Theory and Signal
Processing (cf. eg. [3, 51, 30, 44, 21, 19, 25, 49, 52, 38, 39, 40, 41]).

From the pure mathematical point of view, being able to understand if a tensor is identi�able
is a very elegant problem that goes back to Kruskal [45] and �nds more modern contributions with
the language of Algebraic Geometry and Multilinear Algebra in eg. [31, 32, 34, 36, 35, 22, 23, 42,
50, 26, 4, 5, 12, 11, 18]. Except for very few contributions [45, 38, 46] which work for certain speci�c
classes of given tensors, all the others regard the identi�ability of generic tensors of certain rank.
From the computational point of view, as far as we know, the unique algorithm dealing with the
identi�ability of any given tensor is a numerical one developed in Bertini [14] in [20].

Dealing with tensors of given rank r brings the problem into the setting of r-th secant varieties
of Segre varieties (cf. De�nition 1.6) namely the closure (either Zariski or Euclidean closures can
be used for this de�nition if working over C) of the set of tensors of rank smaller or equal than
r. Knowing if a generic tensor of certain rank is identi�able gives an indication regarding the
behaviour of speci�c tensors of the same rank. Namely, the dimension of the set S(Y, T ) of rank-1
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tensors computing the rank of a speci�c tensor T (cf. De�nition 1.4) can only be bigger or equal
than the dimension of S(Y, q) where q is a generic tensor of rank equal to the rank of T (this will be
explained in Remark 3.2 for the speci�c case of rank-3 tensors T ∈ (C2)⊗4, but it is a well known
general fact for which we refer [43, Cap II, Ex 3.22, part (b)]). Since the cases in which generic
tensors of �xed rank are not-identi�able are rare (cf. eg. [18, 26, 42, 47, 22, 27, 28, 29, 34]), the
knowledge of generic tensors' behaviour doesn't help in all the applied problems where the ken of a
speci�c tensor modeling certain precise samples is required.

In the present manuscript we present a systematic study of the identi�ability of a given tensor
starting with those of ranks 2 and 3. We give a complete classi�cation of these �rst cases: we
describe the structures and the dimensions of all the sets evincing the rank. In terms of generic
tensors of rank either 2 or 3, everything was already well known form [1, 8, 27, 29, 34, 36, 45, 37].
What it was missing was the complete classi�cation for all the tensors of those ranks.

In Proposition 2.3 we show that rank-2 tensors T are always identi�able except if T is a 2 × 2
matrix. Our main Theorem 7.1 states that a rank-3 tensor T is identi�able except if

1. T is a 3× 3 matrix and dim(S(Y, T )) = 6;

2. there exist v1, v2, v3 ∈ C2 s.t. T ∈ C2⊗v2⊗v3+v1⊗C2⊗v3+v1⊗v2⊗C2 and dim(S(Y, T )) ≥ 2;

3. T ∈ (C2)⊗4 and dim(S(Y, T )) ≥ 1;

4. T ∈ C3 ⊗ C2 ⊗ C2 and it is constructed as in Example 3.6. In this case dim(S(Y, T )) = 3;

5. T ∈ C3 ⊗ C2 ⊗ C2 and it is constructed as in Example 3.7. In this case S(Y, T ) contains two
di�erent 4-dimensional families;

6. T ∈ Cm1 ⊗ Cm2 ⊗ (C2)k−2, where k ≥ 3 and m1,m2 ∈ {2, 3}. In this case dim(S(Y, T )) ≥ 2
and T is constructed as in Proposition 3.10. If m1 +m2 + k ≥ 6 then dim(S(Y, T )) = 2.

The paper is organized as follows. After the preliminary Section 1 where we introduce the
notation and the main ingredients needed for the set up, we can immediately show the identi�ability
of rank-2 tensors in Section 2. In Section 3 we explain in details the examples where the non-
identi�ability of a rank-3 tensor arises. In Sections 5 and 6 we show that the examples of the
previous section are the only possible exceptions to non-identi�ability of a rank-3 tensor. Section 7
is actually devoted to collect all the information needed (but actually already proved at that stage)
to conclude the proof of our main Theorem 7.1.

1 Preliminaries and Notation

We will always work over an algebraically closed �eld K of characteristic 0.

De�nition 1.1. Let X ⊂ PN be a non-degenerate projective variety, the X-rank rX(q) of a point
q ∈ 〈X〉 is the minimal cardinality of a �nite set S ⊂ X such that q ∈ 〈S〉.

Notation 1.2. Let A ⊂ PN be any subset. With an abuse of notation we denote by 〈A〉 the
projective space spanned by A.

Let V1, . . . , Vk be vectors spaces of dimension n1 + 1, . . . , nk + 1 respectively, the Segre variety is
the image of the following embedding:

ν : P(V1)× · · · × P(Vk)→ P(V1 ⊗ · · · ⊗ Vk)

([v1], . . . , [vk]) 7→ [v1 ⊗ · · · ⊗ vk]
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Notation 1.3. We denote by Y the multiprojective space

Y := P
n1 × · · · × Pnk

and by X the image of Y via Segre embedding, i.e. X = ν(Y ).
We denote the projection on the i-th factor as

πi : Y −→ P
ni .

The space corresponding to forget the i-th factor in the multiprojective space Y is denoted by Yi:

Yi := P
n1 × · · · × P̂ni × · · · × Pnk .

With νi : Yi −→ PN
′
we denote the corresponding Segre embedding, in particular Xi := ν(Yi).

The projection on all the factors of Y but the i-th one is denoted with ηi:

ηi : Y −→ Yi.

Obviously all �bers of ηi are isomorphic to Pni .

De�nition 1.4. For any q ∈ PN , S(Y, q) denotes the set of all subsets A ⊂ Y such that ](A) = rX(q)
and q ∈ 〈ν(A)〉 and we will say that if A ∈ S(Y, q), then A evinces the rank of q. Moreover we say
that q ∈ 〈X〉 is identi�able if ]S(Y, q) = 1.

Notation 1.5. Sometimes we will also use the following multi-index notations: for 1 ≤ i ≤ k,
εi = (0, . . . , 0, 1, 0, . . . , 0), where the only 1 is in the i-th place and ε̂i which is a k-uple with all one's
but the i-th place, which is �lled by 0, i.e. ε̂i = (1, . . . , 1, 0, 1, . . . , 1).

De�nition 1.6. The r-th secant variety of X is σr(X) :=
⋃
p,...,pr∈X〈p1, . . . , pr〉 where the closure

is the the Zariski closure. The set of points of X-rank equal to r is sometime denoted as σ0
r(X).

If dimσr(X) < min{rn + r − 1,dim〈X〉}, the variety X is said to be r-defective, otherwise X is
r-regular. If X is r-defective, the di�erence δr = min{rn+ r− 1,dim〈X〉} − dimσr(X) is called the
r-th secant defect of X.

We will often use the so called Concision/Autarky property (cf. [48, Prop. 3.1.3.1] [9, Lemma
2.4]) that we recall here.

Lemma 1.7 (Concision/Autarky). For any q ∈ P(V1 ⊗ · · · ⊗ Vk), there is a unique minimal multi-
projective space Y ′ ' Pn

′
1 × · · · × Pn′

k ⊆ Y ' Pn1 × · · · × Pnk with n′i ≤ ni, i = 1, . . . , k such that
S(Y, q) = S(Y ′, q).

De�nition 1.8. (Concise Segre) Given a point q ∈ PN , we will call concise Segre the variety
Xq := ν(Y ′) where Y ′ ⊆ Y is the minimal multiprojective space Y ′ ⊆ Y such that q ∈ 〈ν(Y ′)〉 as in
Concision/Autarky Lemma 1.7.

Remark 1.9. The minimal Y ′ de�ning the concise Segre of a point q can be obtained as follows.
Fix any A ∈ S(Y, q), set Ai := πi(A) ⊂ Pni , i = 1, . . . , k, where the πi's are the projections on the
i-th factor of Notation 1.3. Each 〈Ai〉 ⊆ Pni is a well-de�ned projective subspace of dimension at
most min{ni, rX(q)− 1}. By Concision/Autarky we have Y ′ =

∏k
i=1〈Ai〉. In particular q does not

depend on the i-th factor of Y if and only if for one A ∈ S(Y, q) the set πi(A) is a single point.
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Remark 1.10. Let q ∈ PN and consider A ∈ S(Y, q). We claim that there is no line L ⊂ X such
that ](L ∩ ν(A)) ≥ 2. Obviously if ](L ∩ ν(A)) > 2 we would have at least 3 points that evince the
rank of q on a line, which is a contradiction with the linearly independence property that sets in
S(Y, q) have. So assume that there exists a line L ⊂ X such that ](L ∩ ν(A)) = 2; let u, v ∈ A be
the preimages of those points, i.e. u 6= v and 〈ν(u), ν(v)〉 = L. Then rX(q) > 2 because if rX(q) = 2
then we would have q ∈ L ⊂ X, so the rank of q will be 1. Let E = A \ {u, v}. Then we will have
that q ∈ 〈ν(E) ∪ L〉, so we can �nd a point o ∈ L such that q ∈ 〈ν(E) ∪ {o}〉, which would imply
rX(q) < ]A.

1.1 A very useful lemma

Let X be a non degenerate irreducible projective variety embedded in PN via an ample line bundle
L. Let Z ⊂ X be a zero-dimensional scheme and let D ⊂ PN be a �xed hyperplane, i.e. D ∈ |L|.
Denote with ResD(Z) the residual scheme of Z with respect to D, i.e. the zero-dimensional scheme
whose de�ning ideal sheaf is IZ : ID. The ideal sheaf ID∩Z,D ⊗ L represents the scheme theoretic
intersection of D and Z, also called the trace of Z with respect to D. The residual exact sequence
of Z with respect to D in X is the following:

0→ IResD(Z) ⊗ L(−D)→ IZ ⊗ L → ID∩Z,D ⊗ L → 0.

An extremely useful tool that will turn out to be crucial in many proofs of this paper is [7,
Lemma 5.1]. We recall here the analogous statement given in [13, Lemma 2.4] in the setting of
zero-dimensional schemes.

Lemma 1.11 (Ballico�Bernardi�Christandl�Gesmundo). Let X ⊆ Pn be an irreducible variety
embedded by the complete linear system associated with L = OX(1). Let p ∈ Pn and let A,B be
zero-dimensional schemes in X such that p ∈ 〈A〉, p ∈ 〈B〉 and there are no A′ ( A and B′ ( B
with p ∈ 〈A′〉 or p ∈ 〈B′〉. Suppose h1(IB(1)) = 0. Let C ⊆ Pn be an e�ective Cartier divisor such
that ResC(A) ∩ ResC(B) = ∅. If h1

(
X, IResC(A∪B)(1)(−C)

)
= 0 then A ∪B ⊆ C.

We rephrase it in terms of sets of points of multiprojective spaces embedded via |O(1, . . . , 1)|.
Let k ≥ 2, let Y = Pn1 × · · · × Pnk such that X := ν(Y ) ⊂ PN , where N =

∏
(ni + 1) − 1. Let

q ∈ PN be a point of X�rank r and let A,B ∈ S(Y, q) be sets of points evincing the rank of q and
write S := A ∪ B. In this setting, the irreducible variety X considered in Lemma 1.11 is the Segre
variety. The residual scheme ResC(S) is therefore S \ (S ∩ C). The assumption h1(IB(1)) = 0 of
[13, Lemma 2.4], in the setting of Segre varieties becomes h1(IB(1, . . . , 1)) = 0, which means that
the points of ν(B) are linearly independent and this assumption is satis�ed since both A and B are
sets evincing the rank of q.

With all this said we can state the speci�c version of [13, Lemma 2.4] and [7, Lemma 5.1] which
is needed in the present paper.

Notation 1.12. With an abuse of notation, when will will make cohomology computation, if the
variety for which we compute the cohomology of the ideal sheaf is Y we will omit it. We will specify
the variety only when it is not Y .

Lemma 1.13. Let k ≥ 2 and consider Y = Pn1 × · · · × Pnk , where all ni ≥ 1. Let q ∈ PN ,
A,B ∈ S(Y, q) be two di�erent subsets evincing the rank of q and write S = A∪B. Let D ∈ |OY (ε)|
be an e�ective Cartier divisor such that A ∩ B ⊂ D, where ε =

∑
i∈I εi for some I ⊂ {1, . . . , k} as

introduced in Notation 1.5. If h1(IS\S∩D(ε̂)) = 0 then S ⊂ D.

The above lemma gives a su�cient condition so that the whole S = A∪B is contained in a given
divisor D of the variety X. If A,B are two disjoint distinct sets evincing the rank of a tensor q of
X�rank 3 the assumption that A ∩B ⊂ D is always satis�ed.
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2 Identi�ability on the 2-nd secant variety

In this section we study and completely determine the identi�ability of points on the second secant
variety of a Segre variety.

By Remark 1.9, the concise Segre of a border rank-2 tensor q is Xq = ν
(
P1
i

)×k
. Therefore for

the rest of this section we will focus our attention to Segre varieties of products of P1's.

Remark 2.1. If the concise Segre Xq of a tensor q ∈ σ2(X) is a ν(P1 × P1), then σ2(Xq) parame-
terizes the 2× 2 matrices for which it is trivial to see that they can be written as sum of two rank-1
matrices in an in�nite number of ways.

For the rest of this section we will therefore focus on Segre varieties of (P1)×k with k ≥ 3.

De�nition 2.2. The variety τ(X) is the tangent developable of a projective variety X, i.e. τ(X) is
de�ned by the union of all tangent spaces to X.

Recall that a tensor q ∈ τ(X) \X has rank equal to 2 if and only if the concise Segre Xq of q is
a two-factors Segre, moreover it is not-identi�able for any number of factors (cf. eg. [8, Remark 3]).

Proposition 2.3. Let q ∈ σ0
2(X). Then |S(Y, q)| > 1 if and only if the concise Segre Xq of q is

Xq = ν(P1 × P1).

Proof. We only need to check the case of k ≥ 4 since k = 2, 3 are classically known. The case of
matrix is obviously not-identi�able (cf. Remark 2.1), while the identi�abily in the case k = 3 is
classically attributed to Segre and it is also among the so called Kruskal range (cf. [45], [36, Thm.
4.6], [34, Thm. 1.2]), see also [37, line 7 of page 484]. We assume therefore that k ≥ 4.

Since X is cut out by quadrics, then if a line L ⊂ PN is such that deg(L ∩X) > 2 then L ⊂ X
and the points of L have X-rank 1. Let A,B ∈ S(Y, q), either 〈A〉 = 〈B〉 or 〈A〉∩〈B〉 = {q}. In fact,
in the �rst case A = B since rX(q) = 2 and therefore 〈A〉 is not contained in X, moreover X is cut
out by quadrics. In the second case A 6= B. We can therefore assume that A,B ∈ S(Y, q) are two
disjoint sets: A = {a, a′}, B = {b, b′}, where a = (a1, . . . , ak), a′ = (a′1, . . . , a

′
k) and b = (b1, . . . , bk),

b′ = (b′1, . . . , b
′
k). Since a 6= a′, we may assume that at least one of their coordinates is di�erent.

Actually we can assume that all the ai 6= a′i, otherwise, by the concision property, one could consider
one factor less. The same considerations hold for B.

Now suppose that there exists an index i ∈ {1, . . . , k} such that {ai, a′i} 6= {bi, b′i} and let such
an index be i = 1: {a1, a′1} 6= {b1, b′1}.
Now we proceed by induction on k. Let ηk, νk, and Xk be as in Notation 1.3. Let q̃ = (q1, . . . , qk−1)
be the projection ηk(q), then ηk(A) 6= ηk(B) and ∅ 6= 〈νk(ηk(A))〉 ∩ 〈νk(ηk(B))〉 ⊃ {q̃} because
{q} ⊂ 〈ν(A)〉 ∩ 〈ν(B)〉. So rXk

(q̃) = 2 and |S(Yk, q̃)| ≥ 2, which is a contradiction because Xk is a
concise Segre of k−1 factor (where k > 3) and a point of it cannot have more than a decomposition.
Thus for all i =, 1 . . . , k we have that {ai, a′i} = {bi, b′i}.

Without loss of generality assume that a1 = b1 and a′1 = b′1, moreover up to permutation there
exists an index e ∈ {1, . . . , k − 1} such that bi = ai and consequently b′i = a′i for 1 ≤ i ≤ e and
bi = a′i and b

′
i = ai for e+ 1 ≤ i ≤ k. Eventually by exchanging the role of the �rst e elements with

the others, we have that k − e ≥ 2 because by assumption k ≥ 4. Let H ∈ |OY (0, . . . , 0, 1)| be the
only element containing a′, H = P1 × · · · × P1 × {a′k} ∼= (P1)×k−1; then ResH(A∪B) = {a′, b′} and
since k − e ≥ 2 we have that ηk(a′) 6= ηk(b′), i.e. h1(IResH(A∪B)(1, . . . , 1, 0)) = 0. By Lemma 1.13,
we get a′ = b′ which contradicts the fact that A ∩B = ∅.

Corollary 2.4. Let q be any rank-2 tensor. If q is not-identi�able, then there is a bijection between
S(Y, q) and P2 \ L, where L ⊂ P2 is a projective line, q ∈ τ(X) and L parametrizes the set of all
degree 2 connected subschemes V of Y such that q ∈ 〈ν(V )〉.
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Proof. It su�ces to work with a Segre variety of 2 factors only because by Proposition 2.3 it is the
unique not-identi�able case in rank-2. Thus X ⊂ P3 is a quadric surface. Denote by Hq ⊂ P3

the polar plane of X with respect to q. Since q /∈ X we have that q /∈ Hq and the intersection
X ∩Hq = {p ∈ X | TpX 3 q} is a smooth conic. Remark also that by de�nition a point o ∈ X is
such that q ∈ ToX if and only if o ∈ X ∩Hq ⊂ τ(X).
Fix o ∈ Hq, then

� if o /∈ X, the line given by 〈o, q〉 is not tangent to X and when considering the intersection
〈o, q〉 ∩X, it is given by two points p1, p2 /∈ {o, q} such that {p1, p2} ∈ S(Y, q);

� if o ∈ X, i.e. o ∈ X ∩Hq, then the line 〈o, q〉 is tangent to X.

Consider Πq = {lines L ⊂ P3 passing through q} ∼= P2 and consider the following isomorphism
ϕ : Hq −→ Πq de�ned by p 7→ 〈p, q〉. Clearly ϕ(X ∩Hq) is a smooth conic C of Πq. Moreover one
can notice that Πq \ ϕ(X ∩Hq) ∼= P2 \ C are just the points of the �rst case.

3 Examples of not-identi�able rank-3 tensors

The purpose of this section is to explain in details the phenomena behind the not-identi�able rank-3
tensors. In the main Theorem 7.1 they will turn out to be the unique cases of not-identi�ability for
a rank-3 tensor.

From now on we always consider q ∈ PN such that rX(q) = 3, therefore, by Remark 1.9, we may
assume that q is an order-k tensor with at most 3 entries in each mode, i.e. the concise Segre of q
is Xq = ν(Pn1 × · · · × Pnk), with n1, . . . , nk ∈ {1, 2}.

First of all let us remark that the matrix case is highly not-identi�able even for the rank-3 case.

Remark 3.1. In the case of two factors (i.e. k = 2), a rank-3 tensor q is a 3 × 3 matrix
of full rank. The dimension of the concise Segre X of 3 × 3 matrices is 4 and dim(σ3(X)) =
min{dim(P8), 3 dim(X) + 2} = min{8, 14} = 8. Thus dimS(Y, q) = 14− 8 = 6 for all q ∈ P8 of rank
3.

Consider now the third secant variety of the Segre embedding of Y = Pn1 × · · · × Pnk , where
ni ∈ {1, 2}, the following Examples 3.6 and 3.7 and Proposition 3.10 provide instances of not-
identi�ability that we will show to be essentially the only classes of not-identi�able rank-3 tensors in
Cn1+1⊗· · ·⊗Cnk+1 (cases (4), (5) and (6) respectively of our main Theorem 7.1) more than the well
known ones (matrix case, points on tangential variety of ν((P1)×3), and elements of the defective
σ3(ν((P1)×4)) � items (1), (2) and (3) respectively of Theorem 7.1).

In the following remark we explain the behaviour on σ3((P1)×4).

Remark 3.2. It has been shown in [1] (cf. also [27, 29]) that the third secant variety of a Segre
variety X is never defective unless either X = ν(P1 × P1 × P1 × P1) or X = ν(P1 × P1 × Pa), with
a ≥ 3.

The case in which q is a rank-3 tensor in 〈ν(P1×P1×Pa)〉 with a ≥ 3 corresponds to a not-concise
tensor (cf. Remark 1.9) therefore it won't play a role in our further discussion.

The case in which X = ν(P1×P1×P1×P1) and q ∈ 〈X〉 can also be easily handled. The fact that
dim(σ3(X)) is strictly smaller than the expected dimension proves that the generic element of σ3(X)
has an in�nite number of rank-3 decompositions. By de�nition of dimension there is no element of
σ3(X) s.t. its tangent space has dimension equal to the expected one: dim(Tq(σ3(X))) ≤ dimσ3(X)
for all q ∈ σ3(X). This does not exclude the existence of certain special rank-3 tensors q such that
dim(Tq(σ3(X))) = dim(Tq′(AbSec3(X))) < 14 where AbSec3(X) := {(p; p1, p2, p3) ∈ P15×X×3 | p ∈
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〈p1, p2, p3〉} is the 3-th abstract secant of X and q′ is the preimage of q via the projection on the �rst
factor. The impossibility of the existence of such a point is guaranteed by [43, Cap II, Ex 3.22, part
(b)]. This proves that all the tensors of σ0

3(X) have an in�nite number of rank-3 decompositions.

Before explaining the other not-identi�able examples we need some preliminary results.

Remark 3.3. Let Y be a multiprojective space with at least two factors where at least one of
them is of projective dimension 2. By relabeling, if necessary, we can assume that the �rst factor
is a P2. Let q ∈ σ0

3(ν(Y )), with ν(Y ) the concise Segre of q and let A,B ∈ S(Y, q) be two disjoint
subsets evincing the rank of q. By Autarky 〈π1(A)〉 = 〈π1(B)〉 = P2; moreover when considering
the restrictions of the projections π1|A and π1|B to the subsets A and B respectively, they are both
injective and both π1(A) and π1(B) contain linearly independent points.

Remark 3.4. Consider Y = P2 × P1 × P1 and an irreducible divisor G ∈ |OY (0, 1, 1)|. Then
σ2(ν(G)) ( σ3(ν(G)) = 〈ν(G)〉 = P8. Indeed G is nothing else than the Segre-Veronese variety
([16]) of P2 × P1 embedded in bi�degree (1,2), i.e. G ∼= P2 × P1, OY (1, 1, 1)|G

∼= OP2×P1(1, 2) and
OY (1, 0, 0) ∼= OY (1, 1, 1)(−G). The classi�cation of the dimensions of secant varieties of such a
Segre-Veronese can be found in [15, 33, 17, 10].

Proposition 3.5. For the Segre embedding of Y = P2 × P1 × P1 �x G1 ∈ |OY (0, 1, 0)| and
G2 ∈ |OY (0, 0, 1)| and de�ne G := G1 ∪ G2 to be their union. We have that for {i, j} = {1, 2},
dim〈ν(Gi)〉 = 5, dim〈ν(G)〉 = 8, σ2(ν(Gi)) = 〈ν(Gi)〉 and 〈ν(G)〉 is the join of σ2(ν(Gi)) and
ν(Gj).

Proof. First of all remark that, for i = 1, 2, Gi ∼= P2 × P1, OY (1, 1, 1)|Gi

∼= OP2×P1(1, 1) and G
is a reducible element of |OY (0, 1, 1)|. With an analogous computation of the one in Remark 3.4
one sees that dim〈ν(G)〉 = 8 and σ2(ν(Gi)) = 〈ν(Gi)〉. It remains to show that 〈ν(G)〉 = J ,
where J denotes the join of σ2(ν(Gi)) and ν(Gj) with {i, j} = {1, 2}. We remark that since
σ2(ν(G)) = P5, then J = Join(P3, ν(G1), ν(G2)). In order to show that J = P8 it is su�cient to
see that dim(σ2(ν(Gi) ∩ ν(Gj))) = 1 and this is a straightforward computation since the elements
of ν(G1) are tensors with a second factor �xed, while the elements of ν(G2) have the third factor
�xed, and in order to have the equality between an element of σ2(ν(G1)) and an element of ν(G2)
it is su�cient to impose two linear independent conditions and therefore since dim(ν(G2)) = 3 we
have that the intersection has dimension 1.

Example 3.6. Take Y = P2 × P1 × P1, consider the Segre embedding on the last two factors
and take a hyperplane section which intersects ν(P1 × P1) in a conic C, then take a point q ∈
〈ν(P2 × C)〉. Such a construction is equivalent to consider an irreducible divisor G ∈ |OY (0, 1, 1)|,
so G ∼= P2 × P1 embedded via O(1, 2), then dimσ2(ν(G)) = 7, thus σ2(ν(G)) ( 〈ν(G)〉 ' P8. As a
direct consequence we get that a general point q ∈ 〈ν(G)〉 has ν(G)-rank 3 and it is not-identi�able
because of the not-identi�ability of the points on 〈C〉 and by [43, Cap II, Ex 3.22, part (b)]. Thus
dim(S(G, q)) = 3.

The following example is in the same setting of the previous one, but in this case we deal with
a reducible conic and in such a case we get a 4-dimensional family of solutions.

Example 3.7. Fix Y = P2 × P1 × P1. Consider G1 ∈ |OY (0, 0, 1)|, G2 ∈ |OY (0, 1, 0)| and call
G = G1 ∪ G2 which is a reducible element of |OY (0, 1, 1)|. By Proposition 3.5, dim〈ν(G)〉 = 8,
moreover by a dimension count we have 〈ν(Gi)〉 = σ2(Gi), for i = 1, 2, both having dimension 5.
By Proposition 3.5 we also have that 〈ν(G)〉 = J1 = J2, where J1 = Join(σ2(ν(G1)), ν(G2)) and
J2 = Join(σ2(ν(G2)), ν(G1)). A general q ∈ 〈ν(G)〉 has rank 3 and for the subsets evincing its
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rank we have a 4-dimensional family of sets A such that ](A) = 3, ](A ∩ G1) = 2, ](A ∩ G2) = 1,
A ∩ G1 ∩ G2 = ∅ and q ∈ 〈ν(A)〉. Such a family has dimension 4 since G1 is a non defective
threefold in P5, therefore there exists a 2-dimensional family of sets of cardinality 2 in G1 spanning
a general point of P5; moreover q sits in a 2-dimensional family of lines joining points of G1 and G2.
Analogously, by looking at q as an element of J2, we get the existence of a 4-dimensional family of
sets B such that ](B) = 3, ](B ∩G2) = 2, ](B ∩G1) = 1, A ∩G1 ∩G2 = ∅ and q ∈ 〈ν(B)〉. So we
proved that S(G, q) contains at least two dimensional families of solution. Thus dimS(G, q) ≥ 4.

Proposition 3.8. Let q ∈ σ0
3(ν(P2 × P1 × P1)) and suppose that there exist A,B ∈ S(Y, q) s.t.

](A ∪ B) = 6. Then there exist a unique G ∈ |OY (0, 1, 1)| containing S = A ∪ B. For such a G we
have that S(Y, q) = S(G, q).

Proof. Call S := A ∪ B, by Remark 3.3, both π1|A and π1|B are injective and both π1(A) and
π1(B) are sets containing linearly independent points. So h1(IA(1, 0, 0)) = h1(IB(1, 0, 0)) = 0. Now
h0(OY (0, 1, 1)) = 4, so there exists G ∈ |OY (0, 1, 1)| containing B. Moreover S \ S ∩ G ⊆ A but
since h1(IA(1, 0, 0)) = 0 we have that S ⊂ G. This holds for any G ∈ |IB(0, 1, 1)|, so 〈ν1(η1(A))〉 ⊂
〈ν1(η1(B))〉. The same holds exchanging the roles of A and B, thus 〈ν1(η1(A))〉 = 〈ν1(η1(B))〉.

Assume G is irreducible, then B contains three linearly independent points on G, so the points
of B are uniquely determined by G.

Assume G is reducible, i.e. G = G1∪G2, with G1 ∈ |OY (0, 1, 0)| and G2 ∈ |OY (0, 0, 1)|. Remark
that, by Autarky, it does not exist any E ∈ S(Y, q) which is all contained in Gi, for i = 1, 2, because
G is a multiprojective subspace of Y . Without loss of generality, we may assume that two points of
E lies in G1; then the three points of E are uniquely determined by a reducible conic, i.e. by the
reducible element G = G1 ∪G2 that contains them.

Corollary 3.9. If q ∈ σ0
3(ν(P2 × P1 × P1)) is such that there exist two disjoint sets A,B ∈ S(Y, q),

then q can be either as in Example 3.6 and dim(S(Y, q)) = 3 or as in Example 3.7 and dim(S(Y, q)) =
4.

Proof. This is a direct consequence of the uniqueness of the G ∈ |OY (0, 1, 1)| s.t. S(Y, q) = S(G, q)
in Proposition 3.8.

Proposition 3.10. Let Y ′ := P1×P1×{u3}×· · ·×{uk} be a proper subset of Y = Pn1 ×· · ·×Pnk ,
k ≥ 2. Take q′ ∈ 〈ν(Y ′)〉 \ ν(Y ′), A ∈ S(Y ′, q′) and p ∈ Y \ Y ′. Assume that Y is the minimal
multiprojective space containing A ∪ {p} and take q ∈ 〈{q′, ν(p)}〉 \ {q′, ν(p)}.

1.
∑k
i=1 ni ≥ 3, n1, n2 ≤ 2, n3, . . . , nk ≤ 1 and if k ≥ 3 then rν(Y )(q) > 1;

2. If k ≥ 3 and
∑k
i=1 ni ≥ 4 then rν(Y )(q) = 3 and S(Y, q) = {{p} ∪A}A∈S(Y ′,q′).

3. ν(Y ) is the concise Segre of q.

Proof. First of all remark that rν(Y )(q) > 1, otherwise there exists o ∈ Y s.t. q = ν(o) and
q′ ∈ 〈ν({o, p})〉. Since rν(Y )(q

′) = 2, we would have {o, p} ∈ S(Y, q′) and by Autarky we get
{o, p} ⊂ Y ′, contradicting the assumption p /∈ Y ′.
The fact that n1 + · · ·+ nk ≥ 3 is obvious from the fact that p /∈ Y ′ so Y 6= Y ′.
Since q′ is a 2 × 2 matrix of rank 2, dimS(Y ′, q′) = 2 and Y ′ is the minimal multiprojective
subspace of Y containing A, the minimal multiprojective subspace containing Y ′ ∪ {p} is Y . So
since Pni = 〈πi(Y ′ ∪ {p})〉, we get 1 ≤ ni ≤ 2 for i = 1, 2 and ni = 1 for all i > 2. This ends item 1.

Item 3 will be a consequence of item 2, in fact if the structure of the elements on S(Y, q) is of
type A ∪ {p} with A ∈ S(Y ′, q′), then Autarky and the fact that Y is the minimal multiprojective
space containing A ∪ {p} will imply that ν(Y ) is the concise Segre of q. So let us prove item 2.
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The proof is by induction on the number of factors. Step (A) is the basis of induction for the
case in which Y has at least one factor of projective dimension 2 (k = 3), Step (B) is the basis of
induction for the case in which all the factors of Y have projective dimension 1 (k = 4), Steps (C)
and (D) are the induction processes of Step (B) and Step (A) respectively.
Let E ∈ S(Y, q), if we will show that E ⊃ {p} and that there exists B ∈ S(Y ′, q′), such that
E = B ∪ {p}, we will be done. Assume that there is no B ∈ S(Y ′, q′) such that E = B ∪ {p}. Fix
any A ∈ S(Y ′, q′) and set S := A ∪ {p} ∪ E.

(A) [Case k = 3, n1 = 2, n2 = n3 = 1] First assume p ∈ E and set E′ := E\{p} and F = A∪E′. Since
∩B∈S(Y,q′)η3(B) = ∅, taking another A ∈ S(Y, q′) if necessary we may assume η3(A)∩η3(E′) = ∅.
Set {D} := |Ip(0, 0, 1)|. By Lemma 1.13, we have h1(IS\S∩D(1, 1, 0)) > 0 and hence (since
]F ≤ 4) h0(IS\S∩D(1, 1, 0)) ≥ 3. This must be true for all A ∈ S(Y ′, q′) and hence we have
h0(Y3, Iη3(Y ′)∪η3(E′)(1, 1)) ≥ 3. Since η3(Y ′) ∈ |OY3

(1, 1)| we have h0(Y3, Iη3(Y ′)(1, 1)) = 1,
contradicting the previous inequality.

From now on suppose p /∈ E. As above we may assume η3(A) ∩ η3(E) = ∅.
Fix o ∈ E. Since h0(OY (1, 1, 0)) = 6 and ]A∪{p}∪ {o} = 4 there is G ∈ |OY (1, 1, 0)| containing
A ∪ {p} ∪ {o}. Assume for the moment S * G, i.e. E * G. We have h1(IS\S∩G(0, 0, 1)) > 0,
thus ]E ≥ 3. Since ]E ≤ 3, we get ]E = 3 (and hence q has rank 3 and ν(Y ) is the concise
Segre containing q), S \ S ∩G = E \ {o} and ]π3(E \ {o}) = 1. Taking a di�erent o ∈ E we get
]π3(E) = 1, i.e. ν(Y ) is not the concise Segre of q, a contradiction.

Now assume S ⊂ G. Since this must be true for allG ∈ |IA∪{p,o}(1, 1, 0)|, we get |IA∪{p,o}(1, 1, 0)| ⊇
|I{p}∪E(1, 1, 0)| 6= ∅. Note that η3(Y ′) ∈ |OY3

(1, 1)| and hence h0(Y3, Iη3(Y ′)(1, 1)) = 1. Since
n1 = 2 and Y is the minimal multiprojective space containing q, we have η3(p) /∈ η3(Y ′). Thus
h0(Y3, Iη3(Y ′)∪{η3(p)}(1, 1)) = 0, a contradiction since |IA∪{p,o}(1, 1, 0)| 6= ∅.

(B) [Case k = 4, n1 = n2 = n3 = n4 = 1] Fix G ∈ |OY (0, 0, 1, 1)| containing E. Assume S * G. Since
S\E = A∪{p}, by Lemma 1.13, we have h1(IA∪{p}(1, 1, 0, 0)) > 0. Call p′ the projection of p via
Y → Y ′. Since OP1×P1(1, 1) is very ample we get that either p′ ∈ A or that ](πi(A ∪ {p′})) = 1
for some i ∈ {1, 2}. The second possibility is excluded, because ](π1(A)) = ](π2(A)) = 2 for any
A ∈ S(Y ′, q′). The �rst possibility is excluded taking instead of A another general A1 ∈ S(Y ′, q′).
Now assume S ⊂ G. We get A ⊂ G. This is ruled out taking another A ∈ S(Y ′, q′) since a
general a ∈ Y ′ is contained in some B ∈ S(Y ′, q′). Thus we would have that Y ′ ⊂ G which is a
contradiction.

(C) [Case k ≥ 5, ni = 1 for all i's] We exclude this case by induction on k, the base case k = 4
being excluded in (B). Fix o ∈ P1 \ {pk, uk}, set M := π−1k (o), i.e. M = (P1)×k−1 × {o}
and call Λ := 〈ν(M)〉. Note that (Y ′ ∪ {p}) ∩ M = ∅. Denote by r = 2k − 1 and de�ne
r′ := dim Λ = 2k−1 − 1.

Consider the following linear projection form Λ:

` : Pr \ Λ→ P
r′ . (3.1)

Note that ν(Y )∩Λ = ν(Yk)×{o} and that `|ν(Y )\M = νk(ηk(Y \M)). We identify Pr
′
with the

target projective space of Yk. Since (Y ′ ∪ {p})∩M = ∅, ` is well-de�ned on Y ′ ∪ {p} and it acts
as the composition of ηk and the Segre embedding.

By the inductive assumption S(Yk, `(q)) = {B∪ηk(p)}B∈S(ηk(Y ′),ηk(q′)). Thus for any E ∈ S(Y, q)
there is B ∈ S(Y ′, q′) such that ηk(E) = ηk(B∪{p}). Since ηk|E is injective by Remark 1.10 and
S(Y, q) ⊇ {B ∪ {p}}B∈S(Y ′,q′), we get S(Y, q) = {B ∪ {p}}B∈S(Y ′,q′).
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(D) [Case k ≥ 3, n1 = 2, n1 + · · ·+ nk ≥ 5] If only one of the factors is a P2 we use Step (A) as base
of the induction and then we construct a projection similar to (3.1). Indeed Y = P2 × (P1)k−1,
where k ≥ 4. Fix o ∈ P1 \ {pk, uk}, set M := π−1k (o) and de�ne Λ := 〈ν(M)〉. Denote
r = 3 · 2k−1− 1 and r′ = dim Λ := 3 · 2k−2− 1. We consider the linear projection ` : Pr \Λ→ Pr

′

which acts as the composition of ηk and the Segre embedding. By the inductive assumption
S(Yk, `(q)) = {B ∪ ηk(p)}B∈S(ηk(Y ′),ηk(q′)). Thus for any E ∈ S(Y, q) there is B ∈ S(Y ′, q′)
such that ηk(E) = ηk(B ∪ {p}). Since ηk|E is injective by Remark 1.10 and S(Y, q) ⊇ {B ∪
{p}}B∈S(Y ′,q′), we get S(Y, q) = {B ∪ {p}}B∈S(Y ′,q′).
Now assume also n2 = 2, so that we must have k ≥ 3. Let Y = P2 × P2 × (P1)k−2 and �x
o ∈ P2 \ π2(Y ′). Set M := π−12 (o), and Λ := 〈ν(M)〉. Then r = 9 · 2k−2− 1, dim Λ = 9 · 2k−3− 1.
Let r′ := 9 ·2k−3−1 and consider the linear projection ` : Pr \Λ→ Pr

′
from Λ which acts on ν(Y )

as the composition of the Segre embedding and the map P2×P2×(P1)k−2 \P2×{o}×(P1)k−2 →
P2 × (P1)k−1, which is the linear projection P2 \ {o} → P1 on the second factor and the identity
on any other factor. Since (Y ′∪{p})∩M = ∅, `(q) is well-de�ned. We conclude since we already
proved the statement in the case where only one of the factors is a P2.

4 Lemmas

In this section we collect the basic lemmas that we will need all along the proof of the main theorem
of the present paper, Theorem 7.1.

The following two lemmas describe two very basic properties that two di�erent sets A and B
evincing the rank of the same rank-3 point q have to satisfy.

Lemma 4.1. Let q be a not-identi�able tensor and let A and B two distinct sets evincing the rank
of q. De�ne S := A ∪B. If ](S) ≥ 5 and dim〈ν(S)〉 = 2, then the rank of q cannot be 3.

Proof. Assume the existence of such a rank-3 tensor q with 2 distinct decompositions A and B s.t.
](A ∪ B) ≥ 5. The plane 〈ν(S)〉 contains at least �ve not-collinear points. Note that 〈ν(S)〉 6⊆ X,
otherwise also q ∈ X which contradicts rX(q) = 3. So 〈ν(S)〉 ∩X contains a conic C. Either if it is
reduced or not, the two secant variety of C �lls 〈ν(S)〉 = P2. So rX(q) ≤ 2 , which is an absurd.

Lemma 4.2. Let q be a not-identi�able rank-3 tensor and let A,B ∈ S(Y, q) be distinct. Then
](A ∩B) ≤ 1.

Proof. Suppose, by contradiction, that A and B have 2 distinct points in common and call the set
of these two points E. Let A = E ∪ {u} and B = E ∪ {v}. Since the rank of q is 3, q /∈ 〈ν(E)〉, but
since by de�nition q ∈ 〈ν(A)〉 ∩ 〈ν(B)〉 we have that 〈ν(E)〉 ( 〈ν(A)〉 ∩ 〈ν(B)〉. Clearly 〈ν(E)〉 is a
line, therefore dim〈ν(A)〉 ∩ 〈ν(B)〉 > 1, but 〈ν(A)〉 and 〈ν(B)〉 are both planes, so 〈ν(A)〉 = 〈ν(B)〉.
In the plane 〈ν(A)〉 we have two di�erent lines: ν(E) and 〈ν(u), ν(v)〉, which mutually intersect in
at most a point q′. Remark that q′ /∈ X because otherwise the line 〈ν(E)〉 would have at least 3
points of rank 1 and so we would have 〈ν(E)〉 ⊂ X, contradicting Remark 1.10. So rX(q′) = 2 and
]S(Y, q′) ≥ 2, by Proposition 2.1 we get that actually q′ ∈ 〈ν(Y ′)〉, where Y ′ = P1 × P1. But also
E, {u, v} ⊂ Y ′, so q ∈ 〈ν(Y ′)〉, which contradicts the fact that q has rank 3.

An immediate corollary of Lemma 4.2 is the following.

Corollary 4.3. If q is a rank-3 tensor and A and B are two distinct sets evincing its rank, then
the cardinality of A ∪B can only be either 5 or 6.
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This corollary turns out to be extremely useful for the proof of our main result, Theorem 7.1.
We will be allowed to focus only on the structure of not-identi�able points of rank-3 with at least
two decompositions A and B as in Corollary 4.3. This is the reason why we will study separately
the case ]A ∪B = 5 in Section 5 form the case ]A ∪B = 6 in Section 6.

Another very useful behaviour that needs to be understood in order to study the identi�ability
of rank-3 tensors, is the structure of the not-independent sets of at most 3 rank-1 tensors. This is
what is described by the following lemma.

Lemma 4.4. A set of points E ⊂ Y ' Pn1 × · · · × Pnk of cardinality at most 3 does not impose
independent conditions to multilinear forms over Yi ' Pn1 × · · · × P̂ni × · · · ×Pnk , i = 1, . . . , k, (i.e.
h1(IE(ε̂i)) > 0) if and only if one of the following cases occurs:

1. ](E) = 3 and there is j ∈ {1, . . . , k} \ {i} such that ](πh(E)) = 1 for all h /∈ {i, j};

2. there are u, v ∈ E such that u 6= v and ηi(u) = ηi(v).

Proof. The fact that both items 1. and 2. imply that h1(IE(ε̂i)) > 0 is obvious. Let us describe the
other implication.

By de�nition H0(OY (ε̂i)) ∼= H0(OYi
(1, . . . , 1), and OY (ε̂i) is not a very ample line bundle. So

we cannot be sure about the injectivity of the restriction ηi|E of ηi to the �nite set E.
If ηi|E is not injective one immediately gets that h1(IE(ε̂i)) > 0. Moreover if ηi|E is not injective
it means that there are 2 distinct points of E, say u and v which are mapped by ηi onto the same
point, i.e. we are in item 2. of this lemma.

Now assume that ηi|E is injective (i.e. we are not in item 2.). This implies that ]E = ]ηi(E). We
have by hypothesis that h1(IE(ε̂i)) > 0. Since by de�nition h1(IE(ε̂i)) = h1(Yi, Iηi(E)(1, . . . , 1)) we
have that ηi(E) does not impose independent conditions to the multilinear forms over Yi, therefore
](ηi(E)) ≥ 3 which clearly implies that ](ηi(E)) = 3 since by hypothesis the cardinality of E is at
most 3. Now ηi(E) is a set of 3 distinct points on Yi which does not impose independent conditions
to the multilinear forms over Yi, and OYi

(1, . . . , 1) is very ample, therefore the 3 points of ηi(E)
must be mapped to collinear points by the Segre embedding νi of Yi. Hence, by the structure of
the Segre variety νi(Yi), we get that 〈νi(ηi(E))〉 ⊆ νi(Yi) and there is j ∈ {1, . . . , k} \ {i} such that
](πh(ηi(E))) = 1 for all h /∈ {i, j}. Since h 6= i, we have πh(ηi(E)) = πh(E).

5 Two di�erent solutions with one common point

We have seen in Corollary 4.3 that if a rank-3 tensor q is not-identi�able and A, B are two sets of
points on the Segre variety computing its rank, then ]A ∪B can only be either 5 or 6. This section
is fully devoted to the case in which ]A ∪B = 5, i.e. A and B share only one point and call it p:

S := A ∪B, ]S = 5, A ∩B = {p} and A′ = A \ {p}, B′ = B \ {p}. (5.2)

The matrix case is well known, therefore we will always assume that q is an order-k ≥ 3 tensor,
i.e. q ∈ 〈ν(Y )〉 with Y =

∏k
i=1 P

ni and k ≥ 3.
We will study separately the cases in which:

� Y contains at least one factor of projective dimension 2 and all the others of dimension either
1 or 2 (Proposition 5.1);

� Y is a product of P1's only (see Proposition 5.2).

11



This will completely cover the cases of not-identi�able rank-3 tensors with the condition (5.2) since,
by Remark 1.9, the concise Segre of a rank-3 point q is Xq = ν(Pn1 × · · · × Pnk), with n1, . . . , nk ∈
{1, 2}.

Proposition 5.1. Let Y be the multiprojective space with at least 3 factors and at least one them
of projective dimension 2, i.e. Y = P2 ×Pn2 × · · · ×Pnk with ni ∈ {1, 2} for i = 1, . . . , k and k ≥ 3.
Let q ∈ σ0

3(ν(Y )), with ν(Y ) the concise Segre of q. If there exist two sets A,B ∈ S(Y, q) evincing
the rank of q such that ]A ∩B = 1 then q is as in Proposition 3.10.

Proof. Consider a divisor M ∈ |OY (ε1)| containing A′ = A \ {p}. By Concision/Autharky S * M ,
so, by Lemma 1.13, either h1(IS\S∩M (ε̂1)) > 0 or p /∈ M and A′ ∪ B′ ⊂ M . We study separately
the two cases.

1. First assume h1(IS\S∩M (ε̂1)) > 0.

The divisor M contains A′ by de�nition so ](S \ S ∩ M) ≤ 3, moreover, if we de�ne Y1 :=
Pn2×· · ·×Pnk with ni = 1, 2 for i = 2, . . . , k, we have that OY1(1, . . . , 1) is very ample, therefore
we can apply Lemma 4.4 and say that one of the following occurs:

(i) ](S \S ∩M) = 3 and there exists a projection πi, with i ∈ {2, . . . , k} such that ](πi(S \S ∩
M)) = 1;

(ii) There exist u, v ∈ (S \ S ∩M) such that u 6= v and η1(u) = η1(v).

We remark that case (ii) implies that πi(u) = πi(v) for all i > 1. Since M contains A′, we have
that S \ S ∩M = {u, v} ⊆ B, we can exclude case (ii) thanks to Remark 1.10.

So only case (i) is possible. Since ](S \S ∩M) = 3 we have that S \S ∩M = B and there exists
an index i ∈ {2, . . . , k} such that ]πi(S \ S ∩M) = 1. The fact that there is an i ∈ {2, . . . , k}
such that ](πi(B)) = 1, means that B only depends by k − 1 factors, contradicting Autarky.

2. Now assume A′ ∪B′ ⊂M .

Let Y ′′ be the minimal multiprojective space contained in M and containing A′ ∪ B′. Since
q ∈ 〈〈ν(Y ′′)〉 ∪ {p})〉 and p /∈ Y ′′, there is a unique o ∈ 〈ν(Y ′′)〉 such that q ∈ 〈{ν(p), o}〉. Since
〈ν(A)〉 (resp. 〈ν(B)〉) is a plane containing ν(p) and q, there is a unique o1 ∈ 〈ν(A′)〉 (resp.
o2 ∈ 〈ν(B′)〉) such that q ∈ 〈{ν(p), o1}〉 (resp. q ∈ 〈{ν(p), o2}〉). The uniqueness of o gives
o = o1 = o2. Since o1 = o2, we get a tensor of rank 2 with A′ and B′ as solutions. Thus q is as
described in Proposition 3.10.

Proposition 5.2. Let Y = (P1)×k with k ≥ 3 and let q ∈ σ0
3(ν(Y )) be such that there exist two

di�erent sets A,B ∈ S(Y, q) with the property ](A ∪ B) = 5, where ν(Y ) is the concise Segre of
q. Then k can only be either 3 or 4. If k = 3 then q belongs to a tangent space of ν((P1)×3) and
dim(S(Y, q)) ≥ 2. If k = 4 then dim(S(Y, q)) ≥ 1.

Proof. If k = 3 then the only rank-3 tensors in 〈ν(P1)×3)〉 are those belonging to the tangential
variety of the Segre variety (cf. [24, 9]) for which dim(S(Y, q)) ≥ 2 (cf. [1, 8, 27, 28]).

The case k = 4 is covered by Remark 3.2.
Assume k > 4 and write Y =

∏k
i=1 P

1
i . Let S = A ∪B as in (5.2).

We build a recursive set of divisors in order to being able to cover the whole set S as follows. Let
oi ∈ P1

i , i = 2, 3, 4 be such that:

1st divisor: π−14 (o4) ∩ S 6= ∅ and call M4 := π−14 (o4);
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2nd divisor: π−13 (o3) ∩ (S \ (S ∩M4)) 6= ∅ and call M3 := π−13 (o3).

3th divisor: If M3 ∪M4 already covers the whole S (i.e. S ⊂ M3 ∪M4), set M2 to be any divisor
M2 ∈ |OY (ε̂2)|.

3th divisor: Otherwise, if S *M3 ∪M4, choose o2 ∈ P1
2 such that π−12 (o2)∩ (S \S ∩ (M3 ∪M4)) 6= ∅

and set M2 := π−12 (o2).

Now it may happen that either S ⊂M2 ∪M3 ∪M4 or not. We study those two cases in (a) and
(b) respectively.

(a) Here we assume that S ⊂ M2 ∪ M3 ∪ M4. Since ](S) = 5 there is at least one of the Mi's
containing at least two points of S, and there are two of the Mi's whose union contains at least
4 points of S: wlog we may assume that ](S ∩ (M3 ∪M4)) ≥ 4.

� Assume ](S ∩ (M3 ∪M4)) = 4. Since OY (1, 1, 0, 0, . . . ) is globally generated, we have that
h1
(
IS\S∩(M3∪M4)(1, 1, 0, 0, 1, 1, . . . )

)
= 0, contradicting Lemma 1.13.

� Assume S ⊂ M3 ∪M4. Therefore there is one of the Mi's containing at least 3 points of S,
let ](M4 ∩ S) ≥ 3. Since S * M4, we get h1

(
IS\S∩M4

(ε̂4)
)
> 0 (by Lemma 1.13), hence

](S \ S ∩M4) = 2 and

S \ S ∩M4 = {u, v} with πi(u) = πi(v), ∀i 6= 4. (5.3)

Since h1
(
IS\S∩M3

(ε̂3)
)
> 0 (again by Lemma 1.13, we get that either there are w, z ∈ S\S∩M3

such that w 6= z, πi(w) = πi(z) for all i 6= 3 or ν4(η4(S ∩M4)) (remind Notation 1.3) is made
by 3 collinear points, say with a line corresponding to the i-th factor. The latter case cannot
arise because S does not depend only on the third, fourth and i-th factor of Y . Thus there
exist

w, z ∈ S \ S ∩M3 such that w 6= z, πi(w) = πi(z) ∀i 6= 3. (5.4)

In (5.3) and (5.4) we have 4 distinct points u, v, w, z such that ](π5({u, v, w, z})) = 1. Take
M5 ∈ |OY (ε5)| containing {u, v, w, z}. Since h1

(
IS\S∩M5

(ε̂5)
)

= 0, Autarky and Lemma 1.13
give a contradiction.

(b) Assume S *M2∪M3∪M4. By Lemma 1.13 we get h1(IS\S∩(M2∪M3∪M4)(1, 0, 0, 0, 1, 1, . . . )) > 0.
Thus ](S \ (M2 ∪M3 ∪M4)) = 2, say S \ (M2 ∪M3 ∪M4) = {u, v} and πi(u) = πi(v) for all
i 6= 2, 3, 4. But in this case it is su�cient to change the orginal choice of o4 and take as o4
the point π4(u) and the the new divisor M4 will contain 2 points of S, i.e. u, v therefore we
are able to get new divisors M2, M3 with the same contruction as above leading to the case
S ⊂M2 ∪M3 ∪M4 excluded in step (a).

6 Two disjoint solutions

We have seen in Corollary 4.3 that if a rank-3 tensor q is not-identi�able and A, B are two sets of
points on the Segre variety computing its rank, then ]A ∪B can only be either 5 or 6. This section
is fully devoted to the case in which ]A ∪B = 6, i.e. A and B are disjoint:

S := A ∪B, ]S = 6, A := {a1, a2, a3}, B := {b1, b2, b3} A ∩B = ∅. (6.5)

First of all let us show that if q is a rank-3 tensor whose concise Segre ν(Y ) has at least two
factors of projective dimension 2, it never happens that in S(Y, q) there are two disjoint sets.
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Remark 6.1. Let Y = (P2)×k1 × (P1)×k2 and S ⊂ Y a set of 6 distinct points. Consider I ⊆
{k1 + 1, . . . , k1 + k2} and ε :=

∑
i∈I εi. Suppose there exists a divisor M ∈ |OY (ε)| intersecting S

in 4 points. Call {u, v} := S \ (S ∩M). In this setting one can apply Lemma 1.13 and get that
h1
(
I{u,v}(ε̂)

)
> 0 (where ε̂ is a (k1 + k2)-uple with 0's in position of the indices appearing in ε of I

and 1's everywhere else) and πh(u) = πh(v) for any h ∈ {1, . . . , k1 + k2} \ I.

Proposition 6.2. Let Y be a multiprojective space with at least three factors and at least two of
them of projective dimension 2, i.e. Y = P2 × P2 × Pn3 × · · · × Pnk with ni ∈ {1, 2} for i = 1, . . . , k
and k ≥ 3. Let q ∈ σ0

3(ν(Y )), with ν(Y ) the concise Segre of q. If A,B ∈ S(Y, q) evince the rank of
q, then A and B cannot be disjoint.

Proof. The proof is by absurd: assume that there exist A,B ∈ S(Y, q) with A ∩ B = ∅. By
Remark 3.3 we have that 〈πi(A)〉 = 〈πi(B)〉 = P2 for i = 1, 2. Fix W ∈ |IB(ε2 + ε3)| (it exists,
because h0(OY (ε2 + ε3)) = h0(P2 × Pn3 ,OP2×Pn3 (1, 1)) = 3(n3 + 1) > 4). Since π1|A is injective,
h1(IA(ε1)) = 0. Thus S ⊂W by Lemma 1.13. In this way we have shown that

any divisor D ∈ |OY (ε2 + ε3)| containing B contains also A. (*)

Claim 6.2.1. π3(ai) = π3(bi) where ai, bi are as in (6.5), for i = 1, 2, 3.

The proof of this claim can be repeated verbatim for all the other projections with only one
caution that we will highlight in the sequel. Therefore, by repeating the argument for all the
projections, we will get that πj(ai) = πj(bi) for i = 1, 2, 3 and for j = 1, . . . , k which is a contradiction
with A and B being distinct. This will conclude the proof.

Proof of the Claim 6.2.1. Take a general hyperplane J3 ⊂ Pn3 containing π3(bi), (where
the bi's are as in (6.5), i = 1, 2, 3) by genericity we may assume that if n3 = 2 then J3
is a line which does not contain any other point of that projection. Set M3 := π−13 (J3).
Take a line

L2 ⊂ P2 containing {π2(bj), π2(bk)} with j, k 6= i and set M2 := π−12 (L2). (**)

We have B ⊂ M2 ∪M3 ∈ |OY (ε2 + ε3)|. Thus from (*) we get that M2 ∪M3 contains
also A. Since A *M2 by Autarky, there is a ∈ A ∩M3, i.e. there is a ∈ A such that

π3(a) = π3(bi) (6.6)

(in fact if n3 = 1 it is trivial, if n3 = 2 then we have already remarked that π3(bi) is the
only point of J3 belonging to π3(Y )). Since πi|A is injective for i = 1, 2 (cf. Remark 3.3),
the points of A projecting on π3(bi) are di�erent for di�erent i's except if there are bi 6= bj
such that π3(bi) = π3(bj). Suppose that this is the case. By Lemma 4.4 we get that
](S \ S ∩M3) = 2. Thus if for i 6= j π3(bi) = π3(bj) there are 2 points of A and 2 points
of B in M3, i.e. ](S ∩M3) = 4. Suppose that S ∩M3 = {a3, b3, a2, b2}. By [13, Lemmas
2.4 and 2.5] (also [7, Lemma 5.1, item (b)]) h1(IS\S∩M3

(ε̂3)) > 0, i.e. πi(a1) = πi(b1)
for all i 6= 3. This is a contradiction since we already know that π3(a2) = π3(b2) and we
would have a2 = b2, which contradicts the assumption that A ∩B = ∅.
Therefore the points a ∈ A of (6.6) are all di�erent for di�erent choices of i's. So we
may assume that π3(ai) = π3(bi) for i = 1, 2, 3 and the π3(bi) 6= π3(bj) for i 6= j.
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The argument of the proof of Claim 6.2.1 can be repeated verbatim for all the others πj 's with the
only caution that when we do the case j = 2 we have to use a line L1 ⊂ P2 containing {π1(bj), π1(bk)}
with j, k 6= i and set M1 := π−11 (L1) instead of M2 and L2 in (**). Moreover (*) clearly holds if we
replace the ε2 with ε1 and ε3 with εj for any j = 3, . . . , k. As already highlighted this concludes the
proves since πj(ai) = πj(bi) for i = 1, 2, 3 and for j = 1, . . . , k which is a contradiction with A and
B being distinct.

This shows that under the assumption (6.5), we can exclude the case where the Segre variety has
at least two factors of projective dimension 2.

Let us focus on the 4-factors case.

Proposition 6.3. Let Y = P2 × P1 × P1 × P1. Let q ∈ σ0
3(ν(Y )), with ν(Y ) the concise Segre of q.

There do not exist two disjoint sets A,B ∈ S(Y, q) evincing the rank of q.

Proof. Assume by contradiction that there exist two disjoint sets A,B ∈ S(Y, q) evincing the rank
of q and moreover assume that no ηi|S is injective, for i = 2, 3, 4.

By Remark 1.10, for each i = 2, 3, 4 there exists a ∈ A, b ∈ B such that ηi(a) = ηi(b). Fix
H := π−11 (L), where L ⊂ P2 is a line containing π1(a1) and π1(a2), where a1, a2 ∈ A. Since we
assumed that no ηi|S is injective, then there exist b1, b2 ∈ B such that π1(ai) = π1(bi), for i = 1, 2.
Thus H ⊃ {a1, a2, b1, b2} and by Autarky S 6⊂ H, so there is at least an element of S out of H,
e.g. a3 ∈ S \ {a1, a2, b1, b2}. Thus we have h1

(
IS\S∩H(0, 1, 1, 1)

)
= 0 contradicting Lemma 1.13. So

there exists at least one integer h ∈ {2, . . . , 4} such that ηh|S is injective.
Firstly de�ne recursively the integers such that the preimages of points o ∈ P1 intersect maximally

the set S:

α4 := max{](π−1i (o) ∩ S)}o∈P1;i=2,...,4. (6.7)

By rearranging if necessary, we can assume that the index i = 2, . . . , 4 realizing α4, is i = 4. Call
K4 := π−14 (o). Then de�ne

α3 := max{](π−1i (o) ∩ (S \ (S ∩K4)))}o∈P1;i=2,3. (6.8)

By rearranging if necessary, we can assume that the index i = 2, 3 realizing α3, is i = 3. Call
K3 := π−13 (o). Finally de�ne

α2 := max{](π−12 (o) ∩ (S \ (S ∩K4 ∪K3)))}o∈P1 . (6.9)

So if we denote by oj ∈ P1, j = 2, 3, 4 the points realizing α2, α3, α4 respectively then we call

Kj := π−1j (oj) for j = 2, 3. (6.10)

Remark that by Autarky assumption 1 ≤ α3 ≤ α4 ≤ 5.

It is easy to see that α4 cannot be 5. In fact if α4 = 5, then ](S \ S ∩K4) = 1 which implies that
h1(IS\S∩K4

(1, 1, 1, 0)) = 0, which is a contradiction with Lemma 1.13.

So the possibilities for α3 and α4 are 1 ≤ α3 ≤ α4 ≤ 4.

Let us show that
α2 6= 1. (�)

Assume that (α2, α3, α4) = (1, 1, 1). In such a case the divisor K2 ∪K3 ∪K4 ∈ |OY (ε̂1)| would
contain exactly 3 points of S. Moreover if h1

(
IS\(S∩K2∪K3∪K4)(ε1)

)
> 0 then by Lemma 4.4 we
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would have a contradiction with (α3, α4) = (1, 1). Therefore if (α2, α3, α4) = (1, 1, 1) we must have
h1
(
IS\(S∩K2∪K3∪K4)(ε1)

)
= 0, but this is a contradiction with Lemma 1.13. Thus if α2 = 1 then

K3 ∪K4 should contain at least 3 points of S, i.e. α3 ≥ 1 and α4 ≥ 2.
Now assume that (α2, α3) = (1, 1). Then π3|S is injective. The idea is to build a divisor

F ∈ |OY (ε)| with ε =
∑
i∈I εi, for some �nite I ∈ {1, . . . , k}, such that ](S \ F ∩ S) = 2 and

apply Remark 6.1 to F : the existence of such a F will contradict the injectivity of π3|S . Let Hi ∈
|OY (εi)| such that Hi∩(S \S∩K4) 6= ∅ for i = 2, 3. The divisor F is either F = K4, or F = K4∪H3

or K4 ∪H2 ∪H3 if α4 = 4, 3, 2 respectively. The case (α2, α3, α4) = (1, 2, 2) can be easily excluded
since ](S \ S ∩K2 ∪K3 ∪K4) = 1 and by Lemma 1.13 we would have h1

(
IS\S∩(K2∪K3∪K4)(ε1)

)
>

0, which is absurd. For the same reason (α2, α3, α4) = (1, 2, 3) is also impossible because then
](S ∩ (K3 ∪K4)) = 5 and by Lemma 1.13 we would have h1

(
IS\S∩(K3∪K4)(1, 1, 0, 0)

)
> 0, which is

a contradiction. This shows α2 6= 1.

We are therefore left with α2 6= 1 < α3 ≤ α4 = 2, 3, 4.

Suppose that α3 = α4 = 2. With these assumptions one also gets α2 = 2. Indeed on one hand
we just showed that we may always take H ∈ |OY (ε2)| such that ](S \ S ∩ (K3 ∪K4)) ∩H) 6= 0, so
such a H intersects S non trivially and K2 is among those H's. On the other hand α2 6= 1 by (�).
So ](S ∩K2) = 2. By the construction of the Ki's in (6.10) for i = 2, 3, 4, it's easy to show that

S =
∐4

i=2
S ∩Ki.

So, since S =
∐4
i=2S ∩ Ki and ](S ∩ Ki) = 2 for i = 2, 3, 4, we can apply Remark 6.1 separately

to the divisors Ki ∪ Kj with i 6= j and get that h1
(
IS∩Ki(ε1 + εi)

)
> 0 for i = 2, 3, 4 and so

π1(S ∩Ki) = 1 for i = 2, 3, 4. In order to get a contradiction it is su�cient to apply again Remark
6.1 to π−11 (〈π1(S ∩K3), π1(S ∩K2)〉). This shows that ](πi(S ∩K4)) = 1 for i = 2, 3, 4. Now since
also ](π1(S ∩K4)) = 1, then ](S ∩K4) = 1, which is a contradiction with the assumption α3 = 2.

This proves that 1 < α2 ≤ α3, and 2 < α4 = 3, 4.

The case (α3, α4) = (2, 4) can be excluded using the same argument of the case (α2, α3, α4) =
(2, 2, 2) above applying Remark 6.1 since if (α3, α4) = (2, 4) we have that K4 plays the role of M in
the remark.

We are therefore left with the unique possibility of (α3, α4) = (3, 3).

Claim 6.3.1. ](π2(S ∩K4)) = 1.

Proof of Claim 6.3.1: Since we are in the hypothesis α4 = 3, the projection of S ∩ K4

onto the �rst two factors of Y is made by at most 3 points.

Suppose that such a projection is made by exactly 3 points. Call Z the image of the
projection of S ∩ K4 onto the �rst two factors. Since h1(P2 × P1, IZ(1, 1)) > 0 those
points must lie on a line L when applying the Segre embedding. Moreover from Remark
3.3 we know that π1(A) and π1(B) are sets of linearly independent points and since linear
subspaces of the Segre variety are all contained in a factor, we get that L ⊂ P2. Thus
](π2(S ∩K4)) = 1 proving the claim in this case.

If the projection of S ∩K4 onto the �rst two factors is made by less than 3 points, there
exist at least two points, u, v ∈ S ∩ K4 such that they share the same image under
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the projection. Remark that if we consider E ⊂ S ∩ K4 such that ]E = 2 and take
T ∈ |IE(1, 1, 0, 0)|, then T ⊃ S ∩K4. Indeed if S ∩K4 6⊂ T then we have that T ∪K3

contains exactly �ve points of S, which leads to a contradiction because by Lemma 1.13
we would have h1

(
IS\S∩T∪K3

(ε̂3)
)
> 0. Therefore also the third point of S ∩K4 share

the same image of u and v and we are done.

Using the third factor instead of the second one, one gets ](π3(K4∩S)) = 1 and since we assumed
that α4 is reached on the fourth factor we also have ](π4(K4 ∩ S)) = 1. The same argument can
be applied to S ∩ K3 which leads to ](π2(K3 ∩ S)) = ](π4(K3 ∩ S)) = 1. Thus ](πi(K4 ∩ S)) =
](πi(K3 ∩ S)) = 1 for all i > 1 which contradicts Autarky.

Since the identi�ability of rank-3 tensors in 〈ν((P1)×4)〉 is already fully described by Remark 3.2,
we are therefore done with the order-4 tensors and we can focus on tensors of order bigger or equal
than 5. So we will deal with Y = Pn1 × (P1)l, with n1 = 1, 2 and l ≥ 4.

Lemma 6.4. Let q be a rank-3 tensor of order at least 5 and let ν(Y ) be its concise Segre. If there
exist two disjoint sets A,B ∈ S(Y, q) as in (6.5), then there exists at least an index i ∈ {1, . . . , k}
such that ηi|S and πi|S are injective.

Proof. [Injectivity of ηi|S .]
Assume that no ηi|S is injective, then by Remark 1.10 for any i = 1, . . . , k there exist an element

a ∈ A and an element b ∈ B such that πh(a) = πh(b) for any h 6= i. It is easy to check that this
condition, applied to two disjoint sets of 3 points each, and at least �ve ηi's, imposes either that
A ∩ B 6= ∅ (contradiction) or that one of the two sets (either A or B) depends only on 4 factors
(contradicting Autarky).

[Injectivity of πi|S .]
Assume that ηi|S is injective and that πi|S is not injective. If i = 1 and the �rst factor of Y is P2

take H ∈ |OY (εi)| as the preimage of a general line that contains exactly one point of S; otherwise
take H ∈ |OY (εi)| as the preimage of a point of S. We remark that in both cases we get that
](πi(S ∩H)) = 1. Since by Autarky S 6⊂ H, by Lemma 1.13 we have that

h1
(
IS\S∩H(ε̂i)

)
> 0.

We distinguish di�erent cases depending on ](S \ S ∩H).

1. Assume ](S\S∩H) = 4 and call S′ := ηi(S\S∩H); let A′ ⊂ S′ such that ]A′ = 2 and call B′ :=
S′ \ A′, so ]B′ = 2. Since ηi|S is injective we have that h1(Yi, IS′(ε̂i)) = h1

(
IS\S∩H(ε̂i)

)
> 0.

So 〈νi(A′)〉 ∩ 〈νi(B′)〉 6= ∅, which means that we have at least a point q′ ∈ 〈ν5(Yi)〉 of rank
2 for which A′ and B′ are di�erent subsets evincing its rank. Thus by Proposition 2.3, since
]S(Yi, q

′) > 1, the points in A′ and B′ only depend on two factors, i.e. ](πj(S′)) = 1 for at
least two indices j ∈ {1, . . . , k}. Without loss of generality assume it happens for j = 1, 2. If
the �rst factor of Y is P2, let M1 ∈ |Iπ1(S′)(ε1)| be the preimage of a general line containing
π1(S′) and let {M2} := |Iπ2(S′)(ε2)|. Otherwise let {Mj} := |Iπj(S′)(εj)|, for j = 1, 2; in both
cases then h1

(
IS\S∩Mj

(ε̂j)
)
> 0. So S \ S ∩Mj = S ∩H and ](ηj(S ∩H)) = 1, for j = 1, 2.

If we call S ∩H = {u, v}, it follows that η1(u) = η1(v) and η2(u) = η2(v), so in particular we
get that πj(u) = πj(v) for any j, which is a contradiction.

2. Assume ](S \S ∩H) = 3. By Proposition 4.4 there exists j 6= i such that ](πh(S \S ∩H)) = 1
for all h 6= i, j. For all h > 1 with h 6= j, i, since h0(OY (εh)) = 2 we get h0

(
IS\S∩H(εh)

)
= 1.
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Set {Mh} := |IS\S∩H(εh)|, if h = 1 and the �rst factor is P2 take Mh ∈ |IS\S∩H(εh)| as the
preimage of a general line, otherwise call {Mh} := |IS\S∩H(εh)|. Since we took H such that
]πi(S ∩H) = 1, there exists at least an index t 6= i such that ]πt(S ∩H) ≥ 2. Thus we can
�nd D ∈ |OY (εt)| containing exactly one point of S ∩H.
For all s 6= t set Ws := Ms ∪D, so ](S \ S ∩Ws) = 2; we remark that Wj ∩ S = Ws ∩ S for
any j, s thus we may call E := S \ S ∩Ws.
By Lemma 1.13 we have that h1(IE((1, . . . , 1) − εs − εt)) > 0, so ]πj(E) = 1 for all j 6= s, t.
Since E ⊂ H we have that πi(E) = 1, moreover taking s = 1, 2, 3, if t 6= j, we get that ]E = 1,
thus a contradiction. It remains to study what happens when t = j, i.e. if ](πj(S ∩H)) ≥ 2.
In such a case, when we let s varies in {1, . . . , k} \ {i, j}, we get ]πs(S ∩ H) = 1. Thus
ηj(S ∩H) = 1, i.e. the three points of S ∩H actually lies on a line, which is a contradiction
with Remark 1.10, because two of them are points of A or B.

3. Assume ](S \ S ∩H) ≤ 2. Since h1
(
IS\S∩H(ε̂i)

)
> 0, we get that ](S \ S ∩H) = 2 and that

]ηi(S \ S ∩H) = 1, which is a contradiction.

With these two lemmas we can conclude the case of two disjoint sets A,B ∈ S(Y, q) with q of
rank-3.

Proposition 6.5. Let q ∈ σ0
3(ν(Y )) be a tensor of order k ≥ 5 and let ν(Y ) be its concise Segre.

Then S(Y, q) does not contain two disjoint sets.

Proof. By Lemma 6.4 there exists at least an index i ∈ {1, . . . , k} such that ηi|S is injective, from
which follows that the corresponding πi|S is also injective. Now if ηj|S is not injective for some
j 6= i then πi|S is not injective, which is a contradiction with the assumption that ηi|S is injective.
Therefore thus ηj|S and πj|S have to be injective for all j = 1, . . . , k.

Write A := {a1, a2, a3} and B := {a4, a5, a6}. If the �rst factor is a P2 take L1 ∈ P2 as a
general line containing π1(a1) and de�ne H1 ∈ |Ia1(ε1)| as H1 := π−11 L1. For i = 2, . . . , 5 take
{Hi} := |Iai(εi)| (this is possible since by hypothesis k ≥ 5). Otherwise for all i = 1, . . . , k take
{Hi} := |Iai(εi)|. In both cases, since every πi|S is injective we get that H1∪· · ·∪H5 contains exactly
5 points of S. Thus from Lemma 1.13 we get that h1

(
IS\(S∩H1∪···∪H5)(0, 0, 0, 0, 0, 1, . . . , 1)

)
> 0

which is a contradiction since ](S \ (S ∩H1 ∪ · · · ∪H5)) = 1.

7 Identi�ability of rank-3 tensors

The following theorem completely characterizes the identi�ability of any rank-3 tensor and it is the
main theorem of the present paper.

Theorem 7.1. Let Y = Pn1 ×· · ·×Pnk be the multiprojective space of the concise Segre of a rank-3
tensor q. Denote with S(Y, q) the set of all subsets of Y computing the rank of q. The rank-3 tensor
q is identi�able except in the following cases:

1. q is a rank-3 matrix, in this case dim(S(Y, q)) = 6;

2. q belongs to a tangent space of the Segre embedding of Y = P1 × P1 × P1, in this case
dim(S(Y, q)) ≥ 2;

3. q is an order-4 tensor of σ0
3(Y ) with Y = P1 × P1 × P1 × P1, in this case dim(S(Y, q)) ≥ 1.

4. q is as in Example 3.6 where Y = P2 × P1 × P1, in this case dim(S(Y, q)) = 3;
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5. q is as in Example 3.7 where Y = P2 × P1 × P1, in this case S(Y, q) contains two di�erent
4-dimensional families;

6. q is as in Proposition 3.10 where Y = Pn1×· · ·×Pnk is such that k ≥ 3, ni ∈ {1, 2} for i = 1, 2,

ni = 1 for i > 2 and
∑k
i=1 ni ≥ 4. In this case dim(S(Y, q)) ≥ 2 and if n1 + n2 + k ≥ 6 then

dim(S(Y, q)) = 2.

Proof. In case 1. the point q is a rank-3 matrix therefore it is highly not-identi�able. See Remark
3.1 for the computation of the dimension of S(Y, q).

Case 2. is also well known: see [8, Remark 3].
Case 3. corresponds to the defective 3-th secant variety of the Segre embedding of Y = (P1)×4

and the fact that all the elements of σ0
3(ν(Y )) are not-identi�able is shown in Remark 3.2. The fact

that dim(S(Y, q)) = 1 for the generic rank-3 tensor depends on the fact that the 3-th defect δ3 of
ν((P1)×4) is exactly 1 (cf. [1]). Moreover by [43, Cap II, Ex 3.22, part (b)] we get that for any rank
3 tensor q, the dimension dim(S(Y, q)) ≥ 1.

Cases 4., 5. and 6. are treated in Examples 3.6 and 3.7 and in Proposition 3.10 respectively.

All the above considerations prove that the list of cases enumerated in the statement corresponds
to non indenti�able rank-3 tensors. We need to show that such a list is exhaustive. Since the matrix
case is already fully covered by case 1 we only need to care about tensors of order at least 3.

First of all recall that by Remark 1.9, the concise Segre of a rank-3 tensor q is ν(Pn1×· · ·×Pnk),
with n1, . . . , nk ∈ {1, 2}. Then consider two distinct sets A,B ∈ S(Y, q). By Corollay 4.3 it can only
happen that ](A ∪B) = 5, 6.

If ](A∪B) = 5, the fact that our list of not-identi�able rank-3 tensors is exhaustive is proved in
Propositions 5.1 and 5.2.

If ](A ∪B) = 6 we can �rstly use Proposition 6.2 to exclude the all the cases in which Y has at
least two factors of dimension 2. Then we start arguing by the number of factors of Y .
If Y has 3 factors and it is the product of P1's only, then the unique tensors of rank-3 are those of the
tangential variety to the Segre variety and this is case 2 of our theorem. The case of Y = P2×P1×P1

is completely covered by Proposition 3.8 together with Examples 3.6 and 3.7 (cf. Corollary 3.9).
If Y has 4 factors and one of them is a P2, there is Proposition 6.3 assuring that S(Y, q) does not
contain two disjoint sets. If Y is a product of four P1's we are in case 3 of our theorem.
The fact that if Y has at least 5 factors then S(Y, q) does not contain two disjoint sets is done in
Proposition 6.5.
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