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Abstract

We investigate the problem of representation of moment sequences by measures in Polyno-
mial Optimization Problems, consisting in finding the infimum f ∗ of a real polynomial f on a
real semialgebraic set S. We analyse the Moment Matrix (MoM) relaxations, dual to the Sum
of Squares (SoS) relaxations, which are hierarchies of convex cones introduced by Lasserre to
approximate measures and positive polynomials. We investigate the property of MoM exactness:
this means that the MoM relaxation converges in finitely many steps, and the minimizing linear
functionals are coming from evaluations at the minimizers of f .

We show that the MoM relaxation coincides with the dual of the SoS relaxation extended
with the real radical of the support of the associated quadratic module Q. We prove that the
vanishing ideal of the semialgebraic set S is generated by the kernel of the Hankel operator
associated to a generic element of the truncated moment cone for a sufficiently high order of
the MoM relaxation. We prove the exactness of MoM relaxation when S is finite and when
regularity conditions, known as Boundary Hessian Conditions, hold on the minimizers. This
implies that MoM exactness holds generically.

1 Introduction

Let f ,g1, . . . , gs ∈R[X1, . . . ,Xn] be polynomials in the indeterminates X1, . . . ,Xn with real coefficients.
The goal of Polynomial Optimization is to find:

f ∗ B inf
{
f (x) ∈R | x ∈Rn, gi(x) ≥ 0 for i = 1, . . . , s

}
. (1)

that is the infimum f ∗ of the objective function f on the basic semialgebraic set S B {x ∈Rn | gi(x) ≥
0 for i = 1, . . . , s }.

It is a general problem, which appears in many contexts (e.g. real solution of polynomial
equations, . . . ) and with many applications. To cite a few of them: in combinatorics, network
optimization design, control, . . . See for instance [Las10].

To solve this NP hard problem, Lasserre [Las01] proposed to use two hierarchies of finite
dimensional convex cones depending on an order d ∈N. The first hierarchy replaces non-negative
polynomials by Sums of Squares (SoS) and non-negative polynomials on S by polynomials of
degree ≤ d in the truncated quadratic module Qd(g) generated by g = {g1, . . . , gs}. The second and
dual hierarchy replaces positive measures by linear functionals ∈ Ld(g) which are non-negative on
the polynomials of the truncated quadratic module Qd(g). This condition is checked by testing
positive semidefiniteness of (localized) Moment Matrices (MoM).

Hereafter (R[X])∗ = hom
R

(R[X],R) denotes real valued linear funcionals on R[X]. We denote
R[X]t the polynomials of degree ≤ t, and σ [t] the restriction of the linear functional σ to R[X]t.

*This extended abstract is based on the preprint [BM20], submitted for publication: we refer to it for the proofs and
more details.

†This work has been supported by European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA).
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Let Σ2 = Σ2[X]B
{
f ∈ R[X] | ∃r ∈N, gi ∈ R[X] : f = g2

1 + · · ·+ g2
r

}
be the convex cone of Sum of

Squares polynomials (SoS). Q ⊂R[X] is called quadratic module if 1 ∈Q, Σ2 ·Q ⊂Q and Q+Q ⊂Q.
A quadratic module Q is Archimedean if ∃ 0 ≤ r ∈ R : r − ‖X‖2 ∈Q. For a quadratic module Q, we
define the support of Q as the ideal suppQBQ∩−Q. For an ideal I ⊂R[X] we denote R

√
I its real

radical: R

√
I B {f ∈R[X] | ∃h ∈N, s ∈ Σ2 f 2h + s ∈ I }.

We describe now the Lasserre SoS and MoM relaxations and we define the exactness property.
These relaxations converge to f ∗ under the Archimedean hypothesis [Las01]. Hereafter we assume
that the minimum f ∗ of the objective function f is always attained on S, that is: Smin B {x ∈ S |
f (x) = f ∗ } , ∅.

We define the SoS relaxation of order d of problem (1) as Q2d(g) and:

f ∗SoS,d B sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
, (2)

whereQt(g)B
{
s0+

∑r
j=1 sjgj ∈R[X]t | r ∈N, gj ∈ g, s0 ∈ Σ2

t , sj ∈ Σ2
t−deggj

}
is the truncated quadratic

module generated by g.
We define the MoM relaxation of order d of problem (1) as L2d(g) and:

f ∗MoM,d B inf
{
〈σ |f 〉 ∈R | σ ∈ L2d(g), 〈σ |1〉 = 1

}
, (3)

where Lt(g) = {σ ∈ (R[X]t)∗ | ∀q ∈ Qt(g), 〈σ |q〉 ≥ 0 } is the dual convex cone of Qt(g).
Two questions arise naturally: if we can reach the minimum f ∗ for some order d of the

relaxations, and in this case if sup = max in Equation (2). Notice that inf = min for all d in

Equation (3), since L(1)
d (g) is closed and Smin , ∅. A remarkable type of minimizing linear functional

are the evaluations at the minimizers: for x∗ ∈ Smin, the evaluation ex∗ : f ∈R[X] 7→ 〈ex∗ |f 〉 = f (x∗)
is such that e[2d]

x∗ ∈ L2d(g) and 〈ex∗ |f 〉 = f ∗.

Definition 1.1 (Finite Convergence). We say that the SoS relaxation (Q2d(g))d∈N (resp. the MoM
relaxation L2d(g))d∈N has the Finite Convergence property for f if ∃k ∈N such that for every d ≥ k,
f ∗SoS,d = f ∗ (resp. f ∗MoM,d = f ∗).

Definition 1.2 (SoS Exactness). We say that the SoS relaxation (Q2d(g))d∈N is exact for f if it has
the finite convergence property and for all d big enough, we have f − f ∗ ∈ Q2d(g) (in other words
sup = max in the definition of f ∗SoS,d).

We can ask a stronger property for the MoM relaxation. We are interested, in particular, in the
linear functionals that realize the minimum: Lmin

2d (g)B
{
σ ∈ L2d(g) | 〈σ |1〉 = 1, 〈σ |f 〉 = f ∗

}
.

Definition 1.3 (MoM Exactness). We say that the MoM relaxation (L2d(g))d∈N is exact for f on the
basic closed semialgebraic set S if:

• it has the finite convergence property;

• for every k ∈N big enough, for d = d(k) ∈N big enough, every truncated functional minimizer
is coming from a probability measure supported on S, i.e. Lmin

2d (g)[k] ⊂M(1)(S)[k].

MoM exactness may be considered as a particular instance of the so called Moment Problem (i.e.
asking if σ ∈R[X]∗ is coming from a measure) or more precisely of the Truncated Strong Moment
Problem (i.e. considering truncated linear functionals and asking that the measure has a specified
support).

Several works have been developed over the last decades to tackle these problems. Though
many works focussed on the SoS relaxation and on the representation of positive polynomials with
sums of squares, the MoM relaxation has been much less studied. It has interesting features, that
deserve a deeper exploration: the convex cones Ld(g) of truncated non-negative linear functionals
are closed; finite convergence can be decided by flat extension tests on moment matrices [CF98],
[LM09]; finite minimizers can be extracted from moment matrices [HL05], [Mou18].
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Exactness and finite convergence for the SoS and MoM are related, but many different situations
may occur (we refer to [BM20; Nie13b; NDS06; DNP07; Mar06; Mar09; Sch00] for examples and
details). There exist examples where nor the SoS nor the MoM have finite convergence (and thus
they are not exact). Since f ∗SoS,d ≤ f

∗
MoM,d , finite convergence for the SoS implies finite convergence

for the MoM. The SoS and the MoM relaxations may have finite convergence but be not exact.
There are examples where: the SoS and the MoM are exact; the SoS is exact and the MoM is not
exact; the SoS is not exact and the MoM is exact.

Hereafter we investigate the truncated moment relaxation from a new perspective, developing
a theoretical and computational study of truncated positive linear functionals. In Section 2 we
analyse in details the properties of moment relaxations. We describe the kernel of truncated
Hankel operators associated to generic positive linear functionals, and we present new results on
the representation of moments of positive linear functionals as moments of measures. In Section 3
we apply the previous results to prove exactness: if the semialgebraic set is finite (section 3.1),
and for generic objective function and constraints (section 3.2). We propose additional constraints
to achieve exactness in a problem with singular minimizers (Section 3.3). Effective numerical
computations illustrate this MoM exactness property (Section 4)

2 Geometry of Moments

We study the convex cones Ld(g) and, when the semialgebraic set is finite, we describe them in
terms of evaluations. These results will be applied in Section 3 to prove exactness of the MoM
relaxations.

By conic duality the (euclidean) closure Qd(g) of Qd(g) ⊂ R[X]d � R
(n+d
d ) is equal to the dual

convex cone of Ld(g). For the study of the MoM relaxation it is thus natural to study Qd(g) instead
of Qd(g).

Definition 2.1. Let Q =Q(g) be a finitely generated quadratic module. We define Q̃ =
⋃
dQd(g).

The description of Q̃ given in the following theorem (and its truncated part) is important for
the study of Ld(g).

Theorem 2.2. Let Q = Q(g) be a finitely generated quadratic module and let J = R

√
suppQ. Then

Q̃ =Q + J and suppQ̃ = J . In particular, Q̃ is a finitely generated quadratic module and does not depend
on the particular choice of generators of Q.

A first consequence is the description of the kernel of Moment Matrices (or Hankel operators)
associated to generic linear functionals, i.e. linear functionals lying in the interior of Ld(g).

Definition 2.3. Let σ ∈ R[X]∗2t. We define the Hankel operator H t
σ : R[X]t → R[X]∗t, g 7→ (g ? σ )[t],

where 〈g ? σ |f 〉B 〈σ |f g〉.

Definition 2.4. We say that σ ∗ ∈ Lt(g) is generic if rankH t
σ ∗ = max{rankH t

η | η ∈ Lt(g)}.

Theorem 2.5. Let Q = Q(g) and J = R

√
suppQ. Then there exists d, t ∈ N such that for σ ∗ ∈ Ld(g)

generic, we have J = (kerH t
σ ∗).

The particular case of zero dimensional ideals was investigated in [Lau07], [LLR08], [Las+13].
In general, suppQ̃ = R

√
suppQ defines a variety strictly bigger than the Zariski closure of S, except

when dim R[X]
suppQ(g) ≤ 1 (see [Mar08, cor. 7.4.2 (3)]) or when Q is a preordering (i.e. Q ·Q ⊂Q, see

[Mar08, p. 26]: it is the Real Nullstellensatz). One can work with preorderings substituting g with
Πg B

∏
j∈J gj : J ⊂ {1, . . . , t}: we can then apply Theorem 2.5 to compute equations for the Zariski

closure of S.
We focus on the case of a finite semialgebraic set S.
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Theorem 2.6. Suppose that dim R[X]
suppQ(g) = 0. Then, S = S(g) = {ξ1, . . . ,ξr} is non-empty and finite and

there exists d ∈N such that ∀k ∈N:

Ld+k(g)[2(ρ−1)+k] = cone(eξ1
, . . . ,eξr )

[2(ρ−1)+k].

where ρ = ρ(ξ1, . . . ,ξr ) is the regularity of S.

Theorem 2.6 says that all the truncated positive linear functionals are coming from evalations
at points of S.

3 Applications to Polynomial Optimization

We apply Theorem 2.5 and Theorem 2.6 to prove exactess of MoM relaxations, when the semialge-
braic set is finite and when a generic regularity condition at the minimizers is satisfied.

3.1 Finite semialgebraic set

We prove MoM exactness when dim R[X]
suppQ = 0.

Theorem 3.1. Let f ∗ denote the infimum of f on S = S(g) and letQ =Q(g). Suppose that dim R[X]
suppQ = 0.

Then the moment relaxation (L2d(g))d∈N is exact. For t ∈N and d ≥ t
2 big enough,

Lmin
2d (g)[t] = conv(eξ1

, . . . ,eξl )
[t],

where {ξ1, . . . ,ξl} ⊂R
n is the finite set of minimizers of f on S. Moreover, if d ≥ t ≥ ρ = ρ(ξ1, . . . ,ξl) and

σ ∈ Lmin
2d (g) is generic, then (kerH t

σ ) = I (ξ1, . . . ,ξl) is the vanishing ideal of the minimizers {ξ1, . . . ,ξl} of
f on S.

3.2 Boundary Hessian Conditions and Generic Exactness

The Boundary Hessian Conditions (introduced by Marshall in [Mar06] and [Mar09], see also
[Sch09]) are regularity conditions of f and g at the minimizers. We show that if they hold we
have exactness for the MoM relaxations. As a corollary we prove that MoM exactness is a generic
property.

Definition 3.2 (Boundary Hessian Conditions). Let V ⊂ R
n be a variety, and let Q be a (finitely

generated) quadratic module such that Q + I (V ) is Archimedean. Let S = S(Q)∩V and f ∈ Pos(S).
We say that the Boundary Hessian Conditions holds at x ∈ V (f )∩ S if there exists t1, . . . , tm ∈Q such
that:

• t1, . . . , tm are part of a regular system of parameters for V at x;

• ∇f (x) = a1∇t1(x) + · · ·+ am∇f (x), where ai are strictly positive real numbers;

• the Hessian of f restricted to V (t1, . . . , tm)∩V is positive definite at x.

Theorem 3.3. Let f ∈ R[X], Q = Q(g) be an Archimedean finitely generated quadratic module and
assume that the BHC hold at every minimizer of f on S = S(g). Then the moment relaxation (L2d(g))d∈N
is exact. For t ∈N and d,e ≥ t

2 big enough:

Lmin
2d (g)[t] = L2e(g,±(f − f ∗))[t] = conv(eξ1

, . . . ,eξr )
[t].

where {ξ1, . . . ,ξr} is the finite set of minimizers of f on S. Moreover, if d ≥ t ≥ ρ(ξ1, . . . ,ξr) and
σ ∗ ∈ Lmin

2d (g) is generic, then (kerH t
σ ∗) = I (ξ1, . . . ,ξr ) is the vanishing ideal of the minimizers of f on S.

For generic f ∈ R[X]d and g1 ∈ R[X]d1
, . . . , gs ∈ R[X]ds the BHC hold, as Nie shows in [Nie14,

th. 1.2]. Then exactness of the MoM relaxation is a generic condition.
In Example 4.1 BHC conditions hold and we effectively apply Theorem 3.3.
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3.3 Gradient, KKT and Polar ideals

To achieve finite convergence and exactness we can add constraits to the initial problem. For global
optimization we can consider the gradient equations (see [NDS06]). For constrained optimization
we can consider Karush–Kuhn–Tucker (KKT) constraints, adding new variables (see [DNP07]) or
projecting them to the variables X (Jacobian equations, see [Nie13a]). We shortly describe them.

Let g1, . . . , gr ,h1, . . . ,hs ∈ R[X] defining S = S(g,±h), and let f ∈ R[X] be the objective function.
Let Λ = (Λ1, . . . ,Λr ) and Γ = (Γ1, . . . ,Γs) be variables representing the Lagrange multipliers associated
with g and h. The KKT constraints associated to the optimization problem minf (x) : x ∈ S(g,±h)
are: 

∂f

∂Xi
−

r∑
k=1

Λ2
k
∂gk
∂Xi
−

s∑
j=1

Γj
∂hj
∂Xi

= 0 ∀i

Λkgk = 0, hj = 0, gk ≥ 0 ∀j,k,
(4)

where the polynomials belong to R[X,Γ,Λ].
A problem of this approach is that these are sufficient but not necessary for x∗ ∈ S being a

minimizer (they are also necessary if Linear Independence Constraint Qualification holds at the
minimizers, see [NW06, th. 12.1]). To solve this problem we define the polar ideal.

Definition 3.4. For f ,g1, . . . , gr ,h1, . . . ,hs ∈R[X] as before, the polar ideal is defined as follows:

J B (h) +
∏

{a1,...,ak}⊂{1,...r}

(
(ga1

, . . . , gak ) +
(
rankJac(f ,h, ga1

, . . . , gak )
)
< s+ k + 1

)
.

where
((

rankJac(f ,h, ga1
, . . . , gak )

)
< l

)
is the ideal generated by the l×l minors of the Jacobian matrix

Jac(f ,h, ga1
, . . . , gak ). The generators of J besides h are the product of active constraints and the

generators of rank ideals.

In this definition, we could replace the product of ideals by their intersection and the l × l
minors of the Jacobian matrices by polynomials defining the same varieties.

We prove that every minimizer belongs to V
R

(J), and as an application of Theorem 3.1 we obtain
that, if the polar variety is finite, then the MoM relaxation extended with the polar ideal is exact.

Lemma 3.5. Let x∗ be a minimizer of f on S = S(g,±h). Then x∗ ∈ V
R

(J).

Theorem 3.6. Let Q = Q(g,±h) and J = (h′) be the polar ideal, where h′ ⊂ R[X] is a finite set of
generators. If V

R
(J) is finite then the moment relaxation (L2d(g,±h′))d∈N is exact.

The assumption in [NDS06], [DNP07] and [Nie13a] for finite convergence and SoS exactness are
smoothness conditions or radicality assumptions on the associated complex variety. Our condition
for MoM exactness is of a different nature, since it is on the finiteness of the real polar variety (see
Example 4.2).

4 Examples

We give examples where we compute the minimum and the minimizers from an exact MoM relax-
ation, when BHC are satisfied (Example 4.1) and for the polar ideal (Example 4.2). Computations
were performed with the Julia package MomentTools.jl1 using the SDP solver Mosek, based on an
interior point method.

Example 4.1 (Robinson form). We find the minimizers of the Robinson form f = x6 + y6 + z6 +
3x2y2z2 − x4(y2 + z2)− y4(x2 + z2)− z4(x2 + y2) on the unit sphere h = x2 + y2 + z2 − 1. The Robinson

1https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
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polynomial has minimum f ∗ = 0 (globally and on the unit sphere), and the minimizers on V
R

(h)
are: √

3
3

(±1,±1,±1),

√
2

2
(0,±1,±1),

√
2

2
(±1,0,±1),

√
2

2
(±1,±1,0).

BHC are satisfied at every minimizer (see [Nie14, ex. 3.2]) and we can recover the minimizers by
Theorem 3.3.

v, M = minimize(f, [h], [], X, 5, Mosek.Optimizer)

w, Xi = get_measure(M)

Here f ∗MoM,5 ≈ v = −1.27211 · 10−7 and the minimizers with positive coordinates are (all the twenty
minimizers are found):

ξx: 0.577351068999 8.812477930640 10−12 0.707107158043 0.707107157553
ξy: 0.577351069076 0.707107158048 1.271729446125 10−13 0.707107157555
ξz: 0.577351066102 0.707107158048 0.707107158042 2.478771201340 10−9

Example 4.2 (Singular minimizer). We minimize f = x on the compact semialgebraic set S =
S(x3−y2,1−x2−y2). The only minimizer is the origin, which is a singular point of the boundary of
S. Thus BHC do not hold. The regularity conditions for the Jacobian and KKT constraints are not
satisfied, but the real polar variety is finite. Adding the polar constraints, we have an exact MoM
relaxation. We can recover an approximation of the minimizer from the MoM relaxation of order 5:

v, M = polar_minimize(f, [], [x^3-y^2,1-x^2-y^2], X, 5, Mosek.Optimizer)

w, Xi = get_measure(M, 2.e-3)

The approximation of the minimum f ∗ = 0 is v = −0.0045, and the decomposition of the moment
sequence with a threshold of 2 · 10−3 gives the following approximation of the minimizer (the
origin):

ξ = (−0.004514367348787526,2.1341684460860045 10−21).

The error of approximation on the minimizer is of the same order than the error on the minimum
f ∗.

References

[BM20] Lorenzo Baldi and Bernard Mourrain. “Exact Moment Representation in Polynomial
Optimization”. preprint. 2020. url: https://hal.archives- ouvertes.fr/hal-
03082531.

[CF98] Raúl E. Curto and Lawrence A. Fialkow. Flat Extensions of Positive Moment Matrices:
Recursively Generated Relations. American Mathematical Soc., 1998. 73 pp. isbn: 978-0-
8218-0869-6.

[DNP07] James Demmel, Jiawang Nie, and Victoria Powers. “Representations of positive polyno-
mials on noncompact semialgebraic sets via KKT ideals”. Journal of Pure and Applied
Algebra 209.1 (2007), pp. 189–200.

[HL05] Didier Henrion and Jean bernard Lasserre. “Detecting global optimality and extracting
solutions in GloptiPoly”. Chapter in D. Henrion, A. Garulli (Editors). Positive polynomials
in control. Lecture Notes in Control and Information Sciences. Springer Verlag, 2005.

[Las01] Jean B. Lasserre. “Global Optimization with Polynomials and the Problem of Moments”.
SIAM Journal on Optimization 11.3 (2001), pp. 796–817.

6

https://hal.archives-ouvertes.fr/hal-03082531
https://hal.archives-ouvertes.fr/hal-03082531


[Las10] Jean-Bernard Lasserre. Moments, positive polynomials and their applications. Imperial
College Press optimization series v. 1. London : Signapore ; Hackensack, NJ: Imperial
College Press ; Distributed by World Scientific Publishing Co, 2010. isbn: 978-1-84816-
445-1.

[Las+13] Jean-Bernard Lasserre, Monique Laurent, Bernard Mourrain, Philipp Rostalski, and
Philippe Trébuchet. “Moment matrices, border bases and real radical computation”.
Journal of Symbolic Computation 51 (2013), pp. 63–85.

[Lau07] Monique Laurent. “Semidefinite representations for finite varieties”. Mathematical
Programming 109.1 (2007), pp. 1–26.

[LLR08] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. “Semidefinite Charac-
terization and Computation of Zero-Dimensional Real Radical Ideals”. Foundations of
Computational Mathematics 8.5 (2008), pp. 607–647.

[LM09] Monique Laurent and Bernard Mourrain. “A Generalized Flat Extension Theorem for
Moment Matrices”. Archiv der Mathematik 93.1 (2009), pp. 87–98.

[Mar06] Murray Marshall. “Representations of Non-Negative Polynomials Having Finitely Many
Zeros”. Annales de la faculté des sciences de Toulouse Mathématiques 15.3 (2006), pp. 599–
609.

[Mar08] Murray Marshall. Positive Polynomials and Sums of Squares. American Mathematical Soc.,
2008. isbn: 978-0-8218-7527-8.

[Mar09] M. Marshall. “Representations of Non-Negative Polynomials, Degree Bounds and Ap-
plications to Optimization”. Canadian Journal of Mathematics 61.1 (2009), pp. 205–
221.

[Mou18] Bernard Mourrain. “Polynomial–Exponential Decomposition From Moments”. Founda-
tions of Computational Mathematics 18.6 (2018), pp. 1435–1492.

[NDS06] Jiawang Nie, James Demmel, and Bernd Sturmfels. “Minimizing Polynomials via Sum of
Squares over the Gradient Ideal”. Mathematical Programming 106.3 (2006), pp. 587–606.

[Nie13a] Jiawang Nie. “An exact Jacobian SDP relaxation for polynomial optimization”. Mathe-
matical Programming 137.1-2 (2013), pp. 225–255.

[Nie13b] Jiawang Nie. “Polynomial Optimization with Real Varieties”. SIAM Journal on Optimiza-
tion 23.3 (2013), pp. 1634–1646.

[Nie14] Jiawang Nie. “Optimality conditions and finite convergence of Lasserre’s hierarchy”.
Mathematical Programming 146.1-2 (2014), pp. 97–121.

[NW06] Jorge Nocedal and S. Wright. Numerical Optimization. 2nd ed. Springer Series in Op-
erations Research and Financial Engineering. New York: Springer-Verlag, 2006. isbn:
978-0-387-30303-1.

[Sch00] Claus Scheiderer. “Sums of squares of regular functions on real algebraic varieties”.
Transactions of the American Mathematical Society 352.3 (2000), pp. 1039–1069.

[Sch09] Claus Scheiderer. “Positivity and Sums of Squares: A Guide to Recent Results”. Emerging
Applications of Algebraic Geometry. Ed. by Mihai Putinar and Seth Sullivant. The IMA
Volumes in Mathematics and its Applications. New York, NY: Springer, 2009, pp. 271–
324. isbn: 978-0-387-09686-5.

7


	Introduction
	Geometry of Moments
	Applications to Polynomial Optimization
	Finite semialgebraic set
	Boundary Hessian Conditions and Generic Exactness
	Gradient, KKT and Polar ideals

	Examples

