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Abstract. In this work we employ the generalized additive decomposition (GAD) of a homogeneous
polynomial F of degree d, as introduced by Iarrobino-Kanev. We prove that the scheme naturally
associated to any GAD of F is regular in degree d. As a consequence, we show that for any such F ,
there always exists at least a 0-dimensional scheme evincing the cactus rank of F that is regular in
degree d. This leads to a remarkable improvement of a cactus decomposition algorithm.

1. Motivation

Establishing the regularity degree of a given algebra is a topic of weighty interest for both algebraic
geometry and commutative algebra. In a nutshell, for a graded commutative algebra A it amounts
to determining the least positive integer after which the Hilbert function of A agrees with its Hilbert
polynomial.

In this work, we address this challenging problem for the graded algebra A to be the quotient ring of a
zero-dimensional scheme Z whose ideal is contained in the apolar ideal of a homogeneous polynomial F ,
see [IK99, Ger96]. In that case, we say that Z is apolar to F . We recall that the latter algebras have
been largely studied in the commutative algebra framework also due to the Macaulay’s Theorem, which
states that all artinian Gorenstein algebras are isomorphic to the quotient ring of an apolar ideal, see
[IK99, Lemma 2.14].

In the case of zero-dimensional schemes, the Hilbert polynomial is equal to the scalar given by the degree
of the scheme. The minimal degree of an apolar scheme to a given polynomial F was classically introduced
by Iarrobino and Kanev as “scheme length” of F ; see [IK99, Definition 5.1]. Nowadays, it is well-known
as “cactus rank” of F . This notion have been popularized mainly by Buczyńska and Buczyńsky because
its wide interest, e.g., see [BB14]. Hence, a natural question is the following.

Question 1. Let Z be a cactus scheme of a homogeneous polynomial F of degree d. Is Z regular in
degree d, i.e. does the Hilbert function of Z stabilize to

codim I(Z)d = dim(k[x]/I)d = deg(Z)?

We provide a partially positive answer to this question as a consequence of our main result (Theorem 3.5),
which shows that when Z evinces a generalized additive decomposition (1) for a degree-d polynomial,
then it is regular in degree d. Such a decomposition, which has been already explored in the literature
[IK99, BBM14, BT20], is always evinced by at least one among the apolar schemes of minimal size, i.e.
among the cactus schemes of F by [BBM14, Theorem 3.7].

This partial result has already consequences of practical interest for the execution of algorithms that share
the task of testing different bases for a given quotient space k[x1, . . . , xn]/I, where I is a prescribed zero-
dimensional ideal. As a concrete example, for achieving a symbolic computation of a generalized additive
decomposition for a given polynomial F , in [BT20] the ideal I arises from the kernel of a Hankel operator
associated to F . In such cases, the known bound on the degrees of elements in a basis of k[x1, . . . , xn]/I
was not sharp in all but the “easy” cases (i.e. those corresponding to Waring decompositions). The
current work shows that the degree of these elements may always be assumed to be not greater than
degF , which remarkably reduces the number of bases to be tested during the algorithm execution.
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A complete solution to Question 1 is still a line of open research: both providing a positive answer
or an instance of a non-regular scheme computing the cactus rank of some polynomial are considered
noteworthy results.

This extended abstract is organized as follows. In Section 2 the standard notation and results employed in
the present work are recalled. Afterwards, in Section 3 generalized additive decompositions are discussed
and the main theorem is derived. Finally, an application of such result to the decomposition algorithm
of [BT20] is presented in Section 4.

2. Regularity of apolar schemes

Let k be an algebraically closed field of characteristic 0. Let S = k[x0, . . . , xn] =⨁d≥0 Sd be the standard
graded polynomial ring with coefficients in k, i.e., Sd is the k-vector space of degree-d homogeneous
polynomials, or forms.

Consider the dual space S∗ ≅ k[y0, . . . , yn] and the apolar action of S∗ on S by partial derviatives,
namely

◦ ∶ S∗ × S → S, (H,G)↦ H(∂0, . . . , ∂n)G.

Definition 2.1. Given F ∈ S, the apolar ideal of F is

F
⊥
= {H ∈ S∗ ∣ H ◦ F = 0} .

A 0-dimensional scheme Z ⊂ PS1 is said to be apolar to F if I(Z) ⊂ F
⊥. The cactus rank of F is

the minimum degree of an apolar scheme of F . We call cactus scheme a scheme apolar to F which
computes its cactus rank.

Given any F ∈ Sd, we regard it as a functional in S∗d defined by

F
∗
∶ Sd → k, G↦ F ◦G.

In order to study the regularity of a cactus scheme, we consider the Veronese embedding

νd ∶ PS1 → PS∗d , [L]→ [(Ld)∗].

Note that, if L = ξ0x0+ . . .+ ξnxn ∈ S1, then (Ld)∗ = d!evξ ∈ S∗d where evξ is just the map of evaluation
at the point ξ = (ξ0, . . . , ξn) ∈ kn+1.

Lemma 2.2 (Apolarity Lemma, [IK99, Ger96]). Let Z be a scheme in PS1 defined by the ideal I(Z) ⊂ S∗

and let F ∈ Sd. Then, the following are equivalent:

(1) [F ∗] ∈ ⟨νd(Z)⟩;

(2) I(Z) ⊂ F⊥.

From the Apolarity Lemma, we have that codim I(Z)d = dim⟨νd(Z)⟩ + 1. Hence, Question 1 can be
rephrased in more geometric terms asking whether dim⟨νd(Z)⟩ = deg(Z) − 1.

3. Generalized additive decompositions

By [BBM14, Theorem 3.7], we know that there exists a cactus scheme which computes a generalized
additive decomposition.

Definition 3.1. Let F ∈ Sd and let L1, . . . , Ls ∈ S1. A generalized additive decomposition (GAD)
of F supported at (L1, . . . , Ls) is an expression

(1) F =

s

∑
i=1

L
d−ki
i Gi, where 0 ≤ ki ≤ d, for all i ∈ {1, . . . , s},

where Li does not divide Gi, for each i ∈ {1, . . . , s}. We also assume for every i ≠ j that Li ≠ Lj.
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Following [BBM14, BJMR18], we associate a 0-dimensional scheme to any GAD as (1).

Let L ∈ S1 be a linear form. We write SL ∶= S/(L − 1) for the quotient ring and πL ∶ S ↠ SL for the
de-homogenization map with respect to L. Given a form F ∈ Sd, we consider the de-homogenization
f ∶= πL(F ) ∈ SL. We construct the scheme defined by the apolar ideal of f

ZF,L ∶= V (f⊥).
By construction, it is a scheme in the affine chart Spec(SL) supported at the origin. Hence, by ho-
mogenizing again the ideal with respect to the linear form L, we obtain a 0-dimensional scheme of PS1

supported at [L]. With a little abuse of notation, we still denote it by ZF,L and we call it the natural
scheme apolar to F at L.

Lemma 3.2. [BJMR18, Corollary 4] The scheme ZF,L is apolar to F .

Definition 3.3. Given a GAD as in (1) we consider the scheme

Z = Z1 ∪ . . . ∪ Zs, with Zi = ZLd−ki
i Gi,Li

.

We say that Z evinces the GAD. The size of the GAD is
s

∑
i=1

deg(Zi).

The generalized rank of F is the smallest size of a GAD of F . We denote it grk(F ).

We recall the following well-known fact, which constitutes the local formulation of our main result.

Lemma 3.4. Let F ∈ Sd and Z is a local scheme evincing a GAD of F , then Z is regular in degree d.

Proof. As observed in [BJMR18, Remark 3], the linear span of νd(ZF,L) in PS∗d can be described as
follows: let DL ∶= L

⊥ ∩ S∗1 and De
L its e-th symmetric power, then

⟨νd(ZF,L)⟩ = P
d

⨁
e=0

(Le (De
L ◦ F ))∗ ⊂ PS∗d .

where De
L ◦F is the k-vector space of degree-(d− e) partial derivatives of F . Now, if F = L

d−k
G, with L

that does not divide G, we look at the scheme ZF,L. If H ∈ DL, then H ◦ F = L
d−k(H ◦G). Therefore,

we have that

(2) ⟨νd(ZF,L)⟩ = P
k

⨁
e=0

(Ld−k+e (De
L ◦G))∗ ⊂ PS∗d ;

in particular, since deg(G) = k ≤ d, we have that ZF,L is contained in the k-fat point supported at
[L]. Since a k-fat point, and therefore all its subschemes, is regular in degree ≥ k − 1, we have that
degZF,L − 1 = ⟨νd(ZF,L)⟩. �

By exploiting the above lemma, we derive the general result.

Theorem 3.5. Let F ∈ Sd and Z is a scheme evincing a GAD, then Z is regular in degree d.

Proof. Consider a GAD of F ∈ Sd as in (1) and let Z be the scheme evincing it as in Definition 3.3. For
each i ∈ {1, . . . , s}, we consider the vector space

Wi ∶=
k

⨁
e=0

(Ld−k+ei (De
Li
◦Gi))

∗
⊂ S∗d .

Hence, we want to prove that Wi ∩∑j≠iWj = ∅. Indeed, from that, we deduce

dim⟨W1, . . . ,Wr⟩ =
s

∑
i=1

dimWi =

s

∑
i=1

deg(Zi)

where the last equality follows from Lemma 3.4.
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In order to prove that Wi ∩∑j≠iWj = ∅, we work in S∗ and we consider, for each i ∈ {1, . . . , s},

W̄i =

k

⨁
e=0

evξi ⋅ (D
e
Li
◦Gi)∗ ⊂ S∗

where ξi = (ξi,0, . . . , ξi,n) ∈ kn+1 if Li = ξi,0x0 + . . .+ ξi,nxn, and, with a slight abuse of notation, we use
the notation F ∗ to indicate the map

F
∗
∶ S → S, G↦ F ◦G.

Since (evξi)∣S∗
d
= d!(Ldi )∗, we have that W̄i ∩ Sd =Wi. Hence, it is enough to show W̄i ∩∑j≠i W̄j = ∅.

For a ∈ S1, we consider

Ma ∶ S
∗
→ S∗, G↦Ma(G) = (H ↦ G ◦ (aH))

By [BT20, Theorem 6.2], the elements of W̄i are generalized eigenvectors for Mxj
with eigenvalue ξi,j .

Hence, we consider

Ei =
n

⋂
j=0

Ej[ξi,j]

where Ej[µ] is the generalized eigenspace of Mxj
with eigenvalue µ.

Finally, we observe that Ei ∩∑j≠iEj ≠ ∅.

We proceed by induction on s. Let s = 2 and assume by contradiction that there exists a non-zero
v ∈ E1 ∩ E2. Thus, for each j ∈ {1, . . . , s}, we have that v ∈ Ej[ξ1,j] ∩ Ej[ξ2,j]. Hence, v is an
eigenvector for Mxj

with eigenvalue ξ1,j = ξ2,j . Therefore, ξ1 = ξ2, which contradicts Definition 1.

Assume s > 2. Consider ∑s
i=1 λivi = 0, with vi ∈ Ei. Let mi,s be such that [Mxj

− ξs,j]mj,s(vs) = 0;
then,

0 = [Mxj
− ξs,j]mj,s (

s

∑
i=1

λivi) =
s−1

∑
i=1

λi[Mxj
− ξs,j]mj,s(vi).

Each [Mxj
−ξs,j]mj,s(vi) is still an element of Ei; hence, by induction, we have that λi = 0 for any i such

that [Mxj
− ξs,j]mj,s(vj) ≠ 0. However, there exists h ∈ {1, . . . , n} such that [Mxh

− ξs,h]mh,s(vi) ≠ 0
otherwise vi ∈ Ei ∩ Es, contradicting the case s = 2. �

Therefore, we have proved the following

Corollary 3.6. For every F ∈ Sd there exists a cactus scheme of F which is regular in degree d.

Proof. From [BBM14, Theorem 3.7] the set of forms of degree d with a GAD of minimal size r coincides
with the set of forms with cactus rank equal to r, therefore for any GAD of minimal size the scheme
evincing that GAD computes the cactus rank of F , and it is regular in degree d by Theorem 3.5. �

Corollary 3.7. Let Z be a cactus scheme for F ∈ Sd such that each of its connected components is
contained in a (d + 1)-fat point. Then Z is regular in degree d.

Proof. Let Z = Z1 ∪ ⋯ ∪ Zs be a decomposition of Z into irreducible components where for every
i ∈ {1, . . . , s} the scheme Zi is supported at Li ∈ S1. Let hi + 1 be the minimal order of a fat point
containing Zi. Since by hypothesis hi + 1 ≤ d+ 1, there are Gi ∈ Shi

such that F = ∑s
i=1 L

d−hi

i Gi, which
is a GAD for F . Therefore by Theorem 3.5, Z is regular in degree d. �

The remaining question is if the latter holds for any cactus scheme. Indeed, a priori, there might by
a cactus scheme which do not evince a GAD; in particular, there might be a cactus scheme of F ∈ Sd
having a connected component which is not contained in the (d + 1)-fat point. At the moment, we do
not have an example of it nor a proof that it cannot be the case.
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4. An application

For a given F ∈ Sd, in [BT20] an algorithm for detecting a cactus decomposition is presented, which
corresponds to a GAD of minimal size in the notation of the current work. The main subroutine of
this algorithm aims at detecting the minimal positive integer r such that there exists an ideal I with
dimk[x1, . . . , xn]/I = r and such that there exists a monomial basis {b1, . . . , br} of k[x1, . . . , xn]/I that
makes some multiplication operators commute. These conditions are satisfied whenever there exists a
GAD of F of size r, which may be reconstructed by the last part of the algorithm once such r and
{b1, . . . , br} are discovered.

As observed in [BT20, Section 7.2], a priori every monomial of degree lower than r should be considered
for constructing such an admissible basis, even if it was noticed that the degree d, which is in general
much lower than r, has been sufficient for every observed candidate. In fact, Corollary 3.6 shows that
this is always the case, as there is at least one cactus scheme evincing a GAD for F that is regular in
degree d, hence the degree-d part of S/F⊥ has dimension r. Thus, there is a basis

⟨b1, . . . , br⟩ = k[x1, . . . , xn]/I,
made of elements of degree deg(bi) ≤ d.
We remark that the reduction in the number of bases to be examined grows rapidly with r − d, and
that high-degree bases are the most expensive to be tested. As a result, this improvement is partic-
ularly significant for high rank tensors, which are often considered the most burdensome to deal with
computationally.
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