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Abstract. We prove that the Pommaret-Seiler resolution for quasi-stable ideals is
cellular and give a cellular structure for it. This shows that this resolution is a general-
ization of the well known Elaihou-Kervaire resolution for stable ideals in a deeper sense
and also suggests an algorithm to construct the minimal free resolution of quasi-stable
monomial ideals.

1. Pommaret-Seiler and Eliahou-Kervaire resolutions

1.1. Pommaret bases and quasi-stable ideals. Involutive bases were introduced in
[11, 12]. They are a type of Gröbner bases with additional combinatorial properties. A
survey of involutive divisions and their role in commutative algebra and the algebraic
approach to partial differential equations can be seen in [20, 21, 22] where the particular
case of Pommaret bases is studied deeply.

Let R = k[x1, . . . , xn] = k[X ] be the polynomial ring on n variables over a field k.
Let µ = (µ1, . . . , µn) ∈ Nn. For the monomial xµ ∈ R or a polynomial f ∈ R such that
lt(f) = xµ, we say that the class of µ or xµ, resp. f , denoted by cls(µ) = cls(xµ) = cls(f),
is equal to min{i|µi 6= 0}. We say that the multiplicative variables of xµ, resp. f , are
XP (xµ) = XP (f) = {x1, . . . , xcls(µ)}, we denote by XP (xµ) the set of non-multiplicative
variables of xµ, given by X \ XP (xµ). We say that xµ is an involutive divisor of xν if
xµ|xν and xν−µ ∈ k[XP (µ)].

Definition 1.1. Let H be a finite collection of monomials, H ⊆ R. We say that H is
a Pommaret basis of the monomial ideal I = 〈H〉 if I =

⊕
h∈H h · k[XP (h)] as vector

spaces.
A finite polynomial set H is a Pommaret basis of the polynomial ideal I = 〈H〉 for

the term order ≺, if all the elements of H possess distinct leading terms and these terms
form a Pommaret basis of the leading ideal lt(I).

We call a monomial ideal I quasi-stable, if it possesses a finite monomial Pommaret
basis.

Quasi-stable monomial ideals can be characterized in several ways which are indepen-
dent of the theory of Pommaret bases, see [22], Proposition 5.3.4. They have appeared
in the literature under the names of ideals of nested type [5], weakly stable ideals [6] or
ideals of Borel-type [14]. The name quasi-stable is due to the fact that these ideals are
a generalization of the important class of stable ideals:

Proposition 1.1 (cf. [22], Proposition 5.5.6). A monomial ideal I is stable if and only
if its minimal monomial generating set is also a Pommaret basis for I.
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1.2. The Eliahou-Kervaire resolution for stable ideals. A central object in the
study of homogeneous (in particular monomial) ideals is the minimal free resolution.
One of the main lines of research in minimal free resolutions is to study particular
classes of ideals. In this vein, the result of Eliahou and Kervaire [9] that gives a closed
form of the minimal free resolution of any stable monomial ideal is one of the most
important ones.

Let us recall the definition of stable ideal.

Definition 1.2. A monomial ideal I is stable if for every xµ ∈ I it satisfies that for each
index i < max(xµ) we have that xµ xi

xmax(xµ)
∈ I, where max(xµ) denotes the index of the

last variable that divides xµ.

In order to describe the resolution of Eliahou and Kervaire, we need the following
result and definition (we follow the notation in [17]).

Proposition 1.2. Let I be a monomial ideal and xµ ∈ I. Then there exists a unique
generator g and monomial h such that xµ = gh and for every xi dividing h we have that
i ≥ max(g).

We say that g is the beginning of xµ and that h is the end of xµ. We denote them by
beg(xµ) and end(xµ) respectively.

Definition 1.3. Let I be a monomial ideal. An EK-symbol for I is a pair of the form
[f, u] where f is a minimal generator of I and u is a square-free monomial satisfying
max(u) � max(f).

The Eliahou-Kervaire resolution is of the form

0 −→ · · · −→ El −→ El−1 −→ · · ·E0 −→ I −→ 0,

where each of the modules Ei is a free module generated by the set of EK-symbols [f, u]
such that deg(u) = i. The differential of the resolution is given by

(1) d([f, u]) =
∑
xi|u

sgn(xi, u)xi[f,
u

xi
]−
∑
xi|u

sgn(xi, u)end(xif)xi[beg(xif),
u

xi
],

where sgn(xi, u) = 1 if the cardinality of the set {xj |xj divides u and j ≤ i} is odd, and
−1 otherwise.

The Eliahou-Kervaire resolution raises as an iterated mapping cone [7, 15], in fact,
this is a way to prove its minimality [18].

1.3. The Pommaret-Seiler resolution. For any quasi-stable ideal I with Pommaret
basis H, Seiler gives in [21] an explicit description of a free resolution of I that can be
read from H. In order to describe it we need the following notation.

For any generator hα and any non-multiplicative variable xk ∈ XP (hα) there exists
a unique index ∆(α, k) and a unique monomial tα;k ∈ k[XP (h∆(α,k))] such that xkhα =
tα;kh∆(α,k).

Let now denote by β
(k)
0 the number of generators in H of class k, and let d =

min{k|β(k)
0 > 0}. Then the Pommaret-Seiler resolution has the form

0 −→ Rrn−d −→ · · · −→ Rr1 −→ · · ·Rr0 −→ I −→ 0,
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where the ranks of the free modules in the resolution are given by

ri =

n−i∑
k=1

(
n− k
i

)
β

(k)
0 .

In order to describe the differential we use the above notations. The generators of the
i-th free module in the Pommaret-Seiler resolution are given by pairs of the form [hα, u]
where hα ∈ H and u is a is a degree i square-free monomial satisfying min(u)  cls(hα).

(2) ∂([hα, u]) =
i∑

j=1

(−1)i−j
(
xuj [hα,

u

xuj
]− tα,uj [h∆(α,uj),

u

xuj
]

)
.

This resolution is not minimal in general. In fact, it is minimal if and only if I is a
stable ideal, in which case it coincides with the Eliahou-Kervaire resolution 1. Despite
its non-minimality, one can read most of the fundamental homological invariants from
the Pommaret-Seiler resolution, like the projective dimension and Castelnuovo-Mumford
regularity of I.

2. The Pommaret-Seiler resolution is cellular

The Pommaret-Seiler resolution of a quasi-stable ideal I can be obtained as an iterated
mapping cone for an adequate sorting of the generators of the Pommaret basis H of I
[1]. This sorting is known as a P -ordering, and sorts the elements of H first by class
and within each class lexicographically. This indicates that this resolution inherits the
mapping cone property from the Eliahou-Kervaire resolution, which gives a stronger
meaning to the statement that the Pommaret-Seiler resolution generalizes the Eliahou
and Kervaire’s one. In this paper we intend to proof that this generalization also applies
to the cellular character of the resolution.

We say that a resolution is cellular if it can be encoded by a regular cell complex.
The concept originated in [3] and was extended in [4, 16]. J. Mermin proofs in [17] that
the Eliahou-Kervaire resolution is cellular and gives an explicit cellular structure for it.
Another cellular structure for the Eliahou-Kervaire resolution can be found in [2]. In
their paper [8], Dochtermann and Mohammadi give a sufficient condition (possession of
a regular decomposition function) for an iterated mapping cone resolution to be cellular
and proof that the Eliahou-Kervaire resolution satisifies this condition. We slightly
generalize here the argument in [8] by defining a regular decomposition function for the
Pommaret-Seiler resolution and thus proving the main result of this section.

Let us recall the following definitions and notations from [8]. Let I be a monomial
ideal. We say that I has linear quotients if there exists an ordering of the generators of I,
(m1, . . . ,mr) such that for each j ≤ r the colon ideal Ij−1 : 〈mj〉 is generated by a subset
of the variables, where Ij−1 = 〈m1, . . . ,mj−1〉 is the ideal generated by the first j − 1
generators of I. In such case, we denote by set(mj) the set of variables that generate
Ij−1 : 〈mj〉. The iterated mapping cone of a monomial ideal that has linear quotients

1Observe that in the notation of [20, 21], which we follow here, the ordering of the variables is reversed
with respect to the traditional one used for instance in [9].
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with respect to an ordering of its minimal generating set is a minimal free resolution of
R/I, cf. [8], Lemma 2.3 and [15], Lemma 1.5.

For any monomial ideal, let M(I) be the set of monomials in I and G(I) a set of
generators of I. A decomposition function for I is an assignment b : M(I) → G(I).
We say that the decomposition function b is regular if for each m ∈ G(I) and every
xt ∈ set(m) we have that set(b(xtm)) ⊆ set(m). Theorem 2.7 in [8] (see also Theorem
1.12 in [15]) gives a closed form formula for the differentials in the minimal free resolution
(obtained as an iterated mapping cone) of any monomial ideal that has linear quotients
with respect to an ordering of its minimal generating set and for which we can define
a regular decomposition function. Furthermore, for any such ideal, the following result
states that the minimal free resolution is supported on a regular CW -complex.

Theorem 2.1 ([8], Theorem 3.11). Suppose I has linear quotients with respect to some
ordering (m1, . . . ,mr) of the minimal generators, and furthermore suppose that I has a
regular decomposition function. Then the minimal resolution of I obtained as an iterated
mapping cone is cellular and supported on a regular CW -complex.

Any quasi-stable monomial ideal I has linear quotients with respect to its P -ordered
Pommaret basis, and the colon ideals are generated by the non-multiplicative variables
of the corresponding generator:

Proposition 2.1 ([1], Proposition 7.2 and [13], Proposition 26). Let H = {h1, . . . , hr}
be a P -ordered monomial Pommaret basis of the quasi-stable monomial ideal I. Then I
possesses linear quotients with respect to the basis H and 〈hα+1, . . . , hs〉 : hα = 〈X p(hα)〉
for all α = 1, . . . , s− 1.

Observe that in this case, H is in general a non-minimal generating set of I, and hence
the iterated mapping cone resolution obtained (i.e. the Pommaret-Seiler resolution of I)
is not the minimal free resolution. Minimality is only obtained if I is stable. Using the
iterated mapping cone structure of the Pommaret-Seiler resolution we can proof that
it is cellular by constructing a regular decomposition function for I with respect to its
Pommaret basis H.

Theorem 2.2. The Pommaret-Seiler resolution of a quasi-stable monomial ideal is cel-
lular.

Proof. Let I be a quasi-stable ideal and M(I) be the set of monomials in I. For every
h ∈ H we define the involutive cone of h with respect to the Pommaret division as C(h) =
h ·k[XP (h)]. The fact that H is an involutive basis for I means that M(I) =

⋃
h∈H C(h)

where the union is disjoint, hence every monomial M(I) has a unique involutive divisor
in H.

We now define the decomposition function b : M(I)→ H as b(xµ) = hα where hα is the
unique element of H that is an involutive divisor of xµ. To see that b is regular observe
that set(hα) = XP (hα). Now, for each xt ∈ XP (hα) we have that b(xthα) = h∆(α,t)

and cls(h∆(α,t)) ≥ cls(hα), hence set(h∆(α,t)) ⊆ set(hα) and b is regular. The rest of the
proof follows the lines of the proof of Theorem 3.11 in [8] except for the minimality of
the resolution. �
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3. A cellular structure for the Pommaret-Seiler resolution

As we saw in the previos section, the fact that the Eliahou-Kervaire resolution for
stable ideals and the minimal resolution of ideals with linear quotients arise as iterated
mapping cones implies that these resolutions are cellular. This iterated mapping cone
construction provides also with an explicit cellular structure for them, as seen in [17]
and [8]. We extend this construction to the Pommaret-Seiler resolution by means of the
P -graph of the Pommaret basis, which is defined in [21], see also [19].

Let I be a quasi-stable ideal and H its Pommaret basis. We associate to it a directed
graph, the P -graph of H, which consists of a vertex for each hα ∈ H and a directed
edge from hα to h∆(α,t) for each hα in H and each xt ∈ XP (hα). The 0-cells of the
CW -structure for the Pommaret-Seiler resolution of I are the vertices of the P -graph of
H considered as points in Rn.

Let now h ∈ H, α = {j1, . . . , jp} ⊆ XP (h) with j1 < · · · < jp and σ a permutation
of α. We define ch(h, α, σ) to be the subset of Rn obtained as the convex hull of the
elements of H that we reach by applying the decomposition function b(hi, t) = h∆(hi,t)

in the order prescribed by σ. If there are no repetitions of elements of H involved in the
description of ch(h, α, σ) then ch(h, α, σ) is a p-dimensional simplex, and we say that
ch(h, α, σ) is non-degenerate. Otherwise, we say that ch(h, α, σ) is degenerate and it is
in fact a face of ch(h, α, σ′) where σ′ is another permutation of α such that ch(h, α, σ′)
is non-degenerate.

We define the cell U(h, α) as the union of the ch(h, α, σ) over all permutations σ of
α. For these cells we have a topological differential map

d(U(h, α)) =
∑
i

(−1)iU(h, α− ji)−
∑
i

(−1)iU(h∆(h,ji), α− ji).

Finally, by adding the monomials in these differentials we obtain the differential in (2)
and have that the described structure is indeed the CW-structure that supports the
Pommaret-Seiler resolution of I.

4. Reduction of the Pommaret-Seiler resolution

The Pommaret-Seiler resolution for quasi-stable ideals is known to be non-minimal,
nevertheless, some of the homological invariants of this resolution can be read directly
off it. In particular, we know that it is a resolution on minimal length [21]. If we denote
by C the CW-complex described in Section 3 then we have that dim(C) = pd(I). In this
section we show that C can be reduced using Discrete Morse Theory [10], and since this
complex supports the Pommaret-Seiler resolution, we can equivalently use the algebraic
formulation in [16]. This fact suggests an algorithm for reducing the Pommaret-Seiler
resolution so that we obtain the minimal one.

The first step consists on building an annotated P-graph of the quasi-stable ideal I at
the same time as we compute the Pommaret basis of I. Let us denote by GI the P-graph
of I, and by P the Pommaret-Seiler resolution of I. As we build the Pommaret basis H
we can store the information of GI assigning two pieces of information to each edge ei,j ,

namely k(ei,j) is the variable k ∈ XP (hi) used to reach hj from hi and t(ei,j) is the term
ti,k. This annotated graph allows us to directly read all the information in P from GI .
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The second step consists on building a Morse matching in Gi or equivalently in ΓP, the
graph associated to the Pommaret-Seiler resolution as described in [23]. For each directed
path p = (p1, . . . , pl) = (ei1,j1 , . . . , eil,jl) in GI we say that the multidegree of the path is

md(p) =
∏l
k=1 t(eik,jk). Note that for any such path, the class of the variables k(pi) are

strictly increasing. We say that a path between nodes i and j is a valid path if md(p) = 1 .
For any multidegree µ consider then the following set of vertices in ΓP (equivalently in C):
Vµ = {α : {u} | md(α : {u}) = µ} where α : {u} indicates the vertex in ΓP corresponding
to the generator indexed by [hα, u] in the Pommaret-Seiler resolution P. Consider now
the following partial matching in Vµ: Eµ = {α : {u} → β : {u/uj} | j = max(u)}. Then
we have that

Proposition 4.1.
⋃
µ∈Nn Eµ is a Morse matching in ΓP.

Proceeding iteratively by multidegree, we obtain a reduction of P. If this reduction
is already the minimal free resolution of I then we stop the algorithm. Otherwise, we
can proceed by further use of Morse matchings using those pairs of generators [hα, u],
[hβ, u

′] in the reduced resolution such that the coefficient of [hβ, u
′] in the differential of

[hα, u] is a nonzero scalar. These Morse mathings are always possible and they strictily
reduce the number of such nonzero scalars in the differential of the resolution, hence
the algorithm terminates after a finite number of steps and provides the minimal free
resolution of I.

The cellular structure C of P allows us to read this reduction in terms of the geometrical
differential of C. Moreover, it can be used to obtain other geometrical Morse matchings
that can eventually reduce the resolution completely. To describe one such reduction, we
define the skeleton P -graph of I as the graph that has a vertex for each minimal generator
of I and there is an edge from mi to mj ∈ G(I) only if the following conditions hold for
µ = lcm(mi,mj):

- µ/mi ∈ k[XP (mi)],
- µ ∈ k[XP (mj)],
- mk - µ for all other mk ∈ G(I).

With this definiton we have that

Proposition 4.2. There is a Morse reduction from C to a subcomplex of it whose 1-
skeleton is the skeleton P -graph of I.

Example 4.1. To illustrate the above notions, let I = 〈x2, y4, y2z2, z3〉 a quasi-stable
ideal whose Pommaret basis is

H = {x2, x2y, x2z, x2y2, x2y3, x2yz, x2y2z, x2y3z, x2z, x2z2, x2yz2, y4z}.
Figure 1 shows the P -graph of I where each edge ei,j is labelled by t(ei,j), and Figure 2

shows the critical cells of a Morse reduction on it applying the Morse-matching based on
the sets Eµ described in Proposition 4.1. We can see that the reduced complex is exactly
the skeleton P -graph of I, depicted in Figure 3. Observe that the skeleton P -graph is
a cell complex that supports the minimal free resolution of I. Hence, the geometrical
differential of this complex gives us the differentials in the minimal free resolution of I,
which is given by

0 −→ R2 ∂2−→ R5 ∂1−→ R4 ∂0−→ R −→ 0,
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Figure 1. P -graph of
I = 〈x2, y4, y2z2, z3〉.
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Figure 2. P -graph of
I = 〈x2, y4, y2z2, z3〉
with critical faces of
Morse reduction.

where

∂0 =
(
x2 y4 y2z2 z3

)
∂1 =


−y4 0 −y2z2 −z3 0
−x2 −z2 0 0 0

0 y2 x2 0 −z
0 0 0 x2 y2

 ∂2 =


z2 0
x2 0
−y2 z

0 −y2

0 x2

 .
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