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Abstract

The aim of this note is to present a geometrically flavoured resolution algorithm for
unibranch singular algebraic curves. The key players in this algorithm are (higher) al-
gebraic curvatures, a family of generators of so-called geometric invariants, representing
”higher order tangent spaces”. Using them, our algorithm constructs for each singular curve
a suitable height function such that the Zariski closure of its graph gives a resolution of sin-
gularities of the curve.

1 Introduction and State of the Art in Resolution of Curve
Singularities

The history of resolution of singularities of algebraic curves goes back more than 150 years to the
work of M. Noether [Noe71, Noe75] who used it in order to find a formula for the genus of plane
algebraic curves. More on the analytic side, at that time, the concept of Puiseux parametrizations
was known as well — first discovered by I. Newton [Ne36, pp. 191-209] and later rediscovered
by V. A. Puiseux [Pu50] while studying the solution space of f(x, y(x)) = 0 — yielding an an-
alytic form of resolution. Nowadays, several methods for resolution of singular algebraic curves
are available (see J. Kollár’s book [Ko07, Chapter 1]): Successive blowups of the singular points
eventually resolve all singularities since it can be shown that certain well chosen local invari-
ants improve under each blowup. By induction on these invariants — usually lexicographically
ordered string of integers — one is done after finitely many steps. A one step resolution is ob-
tained by normalization but here, the geometric intuition is hidden behind commutative algebra
machinery, see [MZ39]. As the resolution of each algebraic curve is unique up to isomorphisms
and the normalization is a finite map, it can also be used together with the result of A. Nobile
[No75] saying the Nash modification is an isomorphism on whole curve X if and only if X
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is smooth, to prove that performing successively the Nash modification yields resolution after
finitely many steps. See also the PhD thesis by V. Rebasso [Re77], or the work by H. Hironaka
[Hi83].

Let us now fix the setting: Let X ⊆ An+1
C be an algebraic space curve with a singularity

at the origin 0 ∈ X defined by polynomials f1, . . . , fr ∈ C[x, y1, . . . , yn]. Assume that X is
analytically irreducible at the origin, i.e., that it admits only one analytic branch at the origin.
Let us for each a ∈ X denote by [a] its corresponding projective point in PnC. A comparison
of the standard blowup of X at 0 with its Nash modification shows immediately that the Nash
modification is a more refined approach to improve singularities. With the standard blowup of
X , one associates to each smooth point a on X the slope of the secant going through a and the
origin:

X\{0} → PnC, a 7→ [a]

and finally, one takes the Zariski closure of the graph of this map in An+1
C × PnC. The Nash

modification looks into the local geometry of X at a point more closely. One associates to each
smooth point a ∈ X the tangent line s(a) = TaX of X at a as an element of the projective
space PnC and takes then the Zariski closure of the graph of the map

X\{0} → PnC, a 7→ s(a)

in An+1
C × PnC. This corresponds, for plane curves, to the blowup of the curve in the Jacobian

ideal of the defining equation of the curve. Thus, the Nash modification represents already a
more geometric treatment of curve singularities. However, at the same time, appart from the
fact that in general many repetitions are necessary to achieve the resolution, already the simple
example of two cusps explains why the study of tangent lines is not sufficient for understanding
the singularities: Consider two cusps defined by equations y3 = x2 and y5 = x2, where each of
them has only one singular point at the origin. Intuitively, the singularity of the cusp defined by
y5 = x2 is worse than the singularity of the other cusp, and this can also be made precise and
proven rigorously. On the other hand, the limiting position of the tangent lines coincide.

y3 = x2

y5 = x2

Figure 1: The limiting position of the tangent lines (black and dashed) of the nodes y3 = x2 and
y5 = x2 at the origin (singular point) coincides.

Another disadvantage of the Nash modification is also the fact that, although it can also be
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defined and applied to varieties of any dimension, only for curves one knows that a sequence of
Nash modifications resolves singularities.

In the present paper we, therefore, wish to present a more refined procedure based on the
consideration of algebraic curvatures — a variation of the classical curvature known from dif-
ferential geometry — which captures more accurately than the tangent lines how the curve runs
into a singular point. Actually, there is not just one algebraic curvature but a whole sequence of
them, each looking more closely into the local geometry of the curve at the point. In fact, these
curvatures determine the curve locally at a smooth point, see [Me20b, Corollaries 2.11 & 3.5].
Now, as with the Nash modification, we may consider again the Zariski closure of the graphs
of the maps induced by associating the individual curvatures, considered now as points in the
projective space P1

C, to smooth points on the curve together with the projection maps induced by
the first projection X × P1

C → X .
Above the singular point, the fiber will consist of all limiting values of the curvatures nearby.

This is thus a very fine measure of the geometry of the singularity. And indeed, this Zariski
closure improves the singularity in a much faster fashion than the classical blowup or the Nash
modification. A precise description and analysis of this observation is given in the body of this
paper.

The main point of these constructions is their geometric flavour. The crucial trick used in
this paper to establish a resolution of X with one blowing up in a center reflecting the geometry
of the curve at its singular point is to use local parametrizations of X at the origin providing
very precise information about the complexity of the singularity itself: Look at X at 0 from the
perspective of parametrizations. Let

γ : t 7→ (x(t), y1(t), . . . , yn(t))

be an analytic parametrization of X at 0. The goal is to construct a rational expression z(t) =
z1(t)
z2(t)

in x(t), y1(t), . . . , yn(t) and their derivatives such that:

(i) z(t) is a power series of order one,

(ii) z(t) admits a rational expression as a formula in the polynomials defining X (and their
partial derivatives), i.e., there exists

z̃ =
z̃1
z̃2
∈ C[∂ifj : i ∈ Nn+1, j = 1, . . . , r] ⊆ C[x, y1, . . . , yn],

such that the equality
z(t) = z̃(γ(t))

is fulfilled. Here, for i = (i0, . . . , in) ∈ Nn+1, by ∂i we denote ∂i0x ∂
i1
y1 · · · ∂

in
yn .

Then, as proven in this paper, the Zariski closure ‹X of the graph of the “height function”

φz : X\{0} → P1
C, x 7→ (z̃1(x) : z̃2(x))

together with the morphism ‹X → X induced by the projection onto the first n+ 1 components
An+1
C × P1

C → An+1
C is the blowup of X in the ideal (z̃1, z̃2) and moreover, it defines already a

resolution of singularities of X .
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X
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•

•

φz

Figure 2: Resolution of singularities of the node given by the equation y2 − y3 = x3.

The key players in the construction of the rational expression z(t) are the algebraic curva-
tures. Let us now explain what our curvatures are.

Inspired by the differential geometric notion of the slope of the tangent vector, curvature and
torsion of space curves in A3

R, we define

κ0,j(t) :=
y′j(t)

x′(t)
, for j = 1, . . . , n,

to be the 0-th algebraic curvatures of X . Further, we define the first and higher algebraic
curvatures of X via

κ1,j(t) :=
y′′j (t)x

′(t)− y′j(t)x′′(t)
x′(t)

and κi,j(t) :=
∂tκi−1,j(t)

x′(t)
for i ≥ 2, j = 1, . . . , n,

respectively. The observation now is that each of the algebraic curvatures is equivariant under
reparametrizations and thus defines a quantity of the curve which does not depend on a choice
of parametrization. As such, intuitively, they should admit also an implicit description as a
rational function in the implicit equations f1, . . . , fr of X and their partial derivatives. In fact,
this intuition is confirmed by a rigorous proof in my PhD thesis [Me20a]. Even more general
statements can be found in [Me20b] (see Theorems 2.5, 2.10, 3.2 and 3.4).

In general, the algebraic curvatures themselves do not yield resolution of X immediately.
Nevertheless, as their orders decrease with the index of the curvatures, notice that for n =
ord(x(t)),mj = ord(yj(t)) we have

ord(κi,j(t)) = mj − (i+ 1)n,

they allow us to drop the multiplicity of the curve at its singularity. More precisely, there always
exists a curvature

κi,j(t) =
κi,j(t)1
κi,j(t)2

,
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for some i, j, so that the multiplicity of the curve obtained as the Zariski closure of the graph of
the height function φκi,j corresponding to κi,j(t) — notice that this curve is then parametrized
by the vector

(x(t), y1(t), . . . , yn(t))× (κi,j(t)1, κi,j(t)2)

— is strictly smaller than the multiplicity of the curveX that is parametrized by (x(t), y1(t), . . . , yn(t)).
This fact will allow us to apply induction in order to resolve X .

At this point, one may object — and this is correct — that the multiplicity of the singular-
ities of the curve drops also under the standard blowups. But this is not our punch line: our
purpose here is to construct geometrically inspired modifications of varieties which may be able
to advance in the resolution of higher dimensional singular varieties (geometric invariants of
higher dimensional varieties were already defined in during my PhD study, see [Me20a]) and to
provide a geometric approach complementing the known more algebraic algorithms. Moreover,
the theory of geometric invariants has its own interest. This paper is also aimed to demonstrate
the elegance and the beauty of the application of this theory towards resolution of singularities.

Let me finally mention, that all results of this paper were obtained during my PhD program
under the supervision of Herwig Hauser and can be found with their complete proofs in my PhD
thesis [Me20a].

Structure of the Paper

In Section 2, we introduce the concept of algebraic curvatures and geometric invariants by means
of symbolic derivatives and symbolic chain rule in a differential field. They are the key players
in our resolution algorithms for plane and space curves presented in the later sections.

Resolution of plane curves with only one singular point is discussed in Section 3. In this
section, we list with Lemma 3.3 the most important properties of the height functions induced
by geometric invariants. As a consequence of this lemma, we conclude with Corollary 3.4 that a
geometric invariant of order one already defines a resolving height function. Finally, we present
the algorithm PLANECURVATURE for the construction of a geometric invariant of order one, a
resolving geometric invariant.

The generalization of the algorithm PLANECURVATURE to the algorithm SPACECURVA-
TURE resolving space curves with only one singularity is provided in Section 4.

Finally, in Section 5, we treat also algebraic curves with more than one singularity. Using
our knowledge and algorithms obtained in the previous sections, we construct a finite family of
geometric invariants and define a corresponding height function that resolves all singularities
simultaneously, see Theorem 5.3.

All our techniques, however, apply only to unibranch algebraic curves. Our algorithms are
not able to resolve all singular algebraic curves that have more than one branches locally at their
singular points. This problem is discussed in Section 6.

We also provide an appendix where the basic facts and properties of Puiseux parametrization,
which we use in this paper very frequently, are collected. See Appendix A.
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2 Geometric Invariants

In this section we recap briefly the abstract definition of geometric invariants and their basic
properties (for a more detailed exposition see [Me20b]).

Algebraic Curvatures of Plane Curves

In order to make the definition of algebraic curvatures independent of a chosen curve, we
introduce the field of rational functions in countably many variables x(i) and y(i), i ∈ N (we
think of x(i) as a symbolic derivative of x(i−1)):

F := C(x(i), y(i) : i ∈ N).

On F , we simulate the classical derivative ∂t with respect to t, that we have in the power series
ring C[[t]], by the C-derivation

∂ : F → F

x(i) 7→ x(i+1)

y(i) 7→ y(i+1).

Thus, F becomes in this way a differential field (F, ∂).

Definition. We call the elements

κ0 :=
y(1)

x(1)
and κ1 :=

y(2)x(1) − y(1)x(2)

(x(1))3

the slope (of the tangent vector) and the first algebraic curvature of plane curves, respectively.
Further, we define the higher algebraic curvatures of plane curves iteratively by

κi :=
∂(κi−1)

x(1)
.

We set
IF := C(x(0), y(0), κi : i ∈ N)

and call the field IF the field of geometric invariants of plane curves and its elements geometric
invariants of plane curves. We will from now on use the notation

x = (x(0), x(1), . . . ) and y = (y(0), y(1), . . . ),

and will denote a rational function p(x(i), y(i) : i ∈ N) ∈ F shortly by p(x, y). At the same
time, for γ(t) = (x(t), y(t)) ∈ C[[t]]2 a parametrization of a plane algebraic curve, we will use
the following notation for the vectors of higher derivatives of its components:

x(t) = (x(t), x′(t), . . . ) and y(t) = (y(t), y′(t), . . . ).

Further, we denote by
p(γ(t)) = p(x(t), y(t))
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the evaluation of an element p ∈ F at γ(t) = (x(t), y(t)), i.e., p after the substitution

x(i) 7→ ∂itx(t), y
(i) 7→ ∂ity(t).

Further, it can be shown that each geometric invariant admits an implicit expression as a rational
function in the variables x and y:

Theorem. Let X = V (f) = {f = 0}, f ∈ C[x, y], be a plane algebraic curve. For each
geometric invariant of plane curves p = p1

p2
∈ IF , satisfying p2(η(t)) 6= 0 for a parametrization

η(t) of X , there exists a rational function

p
(
X
)
=
p
(
X
)
1

p
(
X
)
2

∈ C(x, y)

so that
p
(
X
)
(γ(t)) = p(γ(t))

is fulfilled for any parametrization γ(t) ∈ C[[t]]2 of X . Moreover, if p ∈ C(κi : i ∈ N), so is
the implicit expression p

(
X
)

a rational function in f and its higher partial derivatives, i.e.,

p
(
X
)
∈ C(∂ix∂jyf : i, j ∈ N) ⊆ C(x, y).

Proof. See [Me20b, Theorem 2.10.] for a constructive proof.

We call p
(
X
)
, as in the theorem, an implicit expression of p (w.r.t. X).

Algebraic Curvatures of Space Curves

Consider for a positive integer n ∈ N the set of variables x(i), y(i)j for i, j ∈ N, 1 ≤ j ≤ n,
and the field

Fn := C(x(i), y(i)j : i, j ∈ N, 1 ≤ j ≤ n).

We extend the derivation ∂ to Fn by ∂(y(i)j ) = y
(i+1)
j and thus, make Fn a differential field

(Fn, ∂), and define the algebraic curvatures of space curves:

Definition. We call the expressions

κi,j := κi(x, yj), for 1 ≤ j ≤ n,

the slopes (of the tangent vector) in the case i = 0 and (the first if i = 1 and the higher for
i ≥ 2) algebraic curvatures of space curves (of embedding dimension n+ 1) otherwise.

We define the field of geometric invariants of space curves by

IFn := C(x(0), y(0)j , κi,j : i, j ∈ N, 1 ≤ j ≤ n)

and call its elements geometric invariants of space curves (of embedding dimension n+ 1).
As in the plane curve case, each algebraic curvature of space curves can be expressed w.r.t. an

algebraic space curve X as a rational function in the variables x, y1, . . . , yn. More precisely,
let X ⊆ An+1

C be a space algebraic curve and I = I(Y ) its vanishing ideal. Further, let
γ(t) ∈ C[[t]]n+1 be a parametrization of X . Let us denote γ(t) = (x(t), y1(t), . . . , yn(t)) =

(∂itx(t), ∂
i
ty1(t), . . . , ∂

i
txn(t), : i ∈ N).
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Theorem. Let X = V (I) be an algebraic space curve and p = p1
p2
∈ IFn a geometric invariant

of space curves satisfying p2(η(t)) 6= 0 for a parametrization η(t) of X . Then there exists a
rational function

p
(
X
)
∈ C(x, y1 . . . , yn)

with

p
(
X
)
(γ(t)) = p(γ(t)) (1)

for any parametrization γ(t) ∈ C[[t]]n+1 of X . Moreover, if p ∈ C(κi,j : i ∈ N, j = 1, . . . , n+
1), then

p
(
X
)
∈ C(∂i0x ∂i1y1 . . . ∂

in
ynf : f ∈ I, ij ∈ N for j = 0, 1, . . . , n) ⊆ C(x, y1 . . . , yn).

Proof. See [Me20b, Theorem 3.4.].

We call a rational function p
(
X
)

satisfying the equality (1) an implicit expression of p
(w.r.t. X).

3 Resolution of analytically irreducible singular plane curves with
only one singularity

In this section we study the behaviour of singularities of plane algebraic curves under blowups
in ideals generated by the numerator and denominator of an implicit expression of an algebraic
curvature of plane curves. We will show that given a unibranch plane algebraic curve with one
singularity, in general, there exist several geometric invariants, even several algebraic curvatures,
whose corresponding blowup improves the singularity of the curve. Moreover, there is always
one among them, which yields already a resolution. The construction of a resolving geometric
invariant is the goal of this section.

Let us fix a plane algebraic curve X ⊆ A2
C with only one singularity at the origin and let

f ∈ C[x, y] be its defining polynomial. Suppose f to be irreducible. Let us further assume that
X is analytically irreducible at 0, i.e., it has only one analytic branch at the origin. In this section
we prove the existence of a resolution of singularities of X by establishing an algorithm which
constructs a geometric invariant

κ̃ =
κ̃1
κ̃2
∈ IF

with the property that the blowup of X in the ideal (κ̃
(
X
)
1
, κ̃
(
X
)
2
) gives a smooth curve ‹Xκ̃.

Or equivalently (see [Ha14, §4]), with the property that the Zariski closure of the graph of the
height function induced by κ̃:

φκ̃ : X\Z → P1
C (2)

a 7→
(
κ̃
(
X
)
1
(a) : κ̃

(
X
)
2
(a)
)

is smooth. Here, κ̃
(
X
)
1

and κ̃
(
X
)
2

denote the numerator and denominator of an implicit ex-
pression of κ̃ w.r.t. X , respectively, and Z = V (f, κ̃

(
X
)
1
, κ̃
(
X
)
2
) the vanishing set of the ideal

(f, κ̃
(
X
)
1
, κ̃
(
X
)
2
).
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Definition 3.1. We call a geometric invariant κ̃ that satisfies the above mentioned properties, a
crucial height of X .

Remark that the crucial height is not unique:

Example 3.2. It is not hard to show that the singularity of the cusp defined by the polynomial
f = x3 − y2 can be resolved by both, the standard blowup, i.e., the monomial blowup in the
ideal (x, y), and by the Nash modification which is defined by the blowup in the ideal (fx, fy) =
(x2, y). These two ideals correspond to the crucial heights

κ̃ =
y(0)

x(0)
and κ̂ =

y(1)

x(1)
,

respectively. However, they are not equal.

At this point, it is very instructive to look atX from the perspective of parametrization. So let
us consider a parametrization γ(t) = (x(t), y(t)) ∈ C{t}2 ofX at 0 (one can always construct a
convergent parametrization according to the Newton-Puiseux algorithm, see Appendix A). The
evaluation κ̃(γ(t)) of a crucial height at γ(t) gives us the pair

(
κ̃1(γ(t)), κ̃2(γ(t))

)
∈ C{t}2 of

power series in t. The vector of power series

γκ̃(t) = γ(t)×
(
κ̃1(γ(t)) : κ̃2(γ(t))

)
defines then a parametrization of ‹Xκ̃.

Let us list now few important facts about maps of type (2) induced by geometric invariants.
The following lemma will serve as the most important indicator for recognizing crucial heights:

Lemma 3.3. Let Y ⊆ A2
C be a plane algebraic curve and defined by a polynomial f ∈ C[x, y].

Assume that Y is analytically irreducible at each point. Further, let p = p1
p2
∈ IF be a geometric

invariant satisfying pi(γ(t)) 6= 0, for i = 1, 2, and for γ(t) a parametrization of Y . Let further

p
(
Y
)
=

p
(
Y
)
1

p
(
Y
)
2

be an implicit expression of p w.r.t. Y . Consider the by p induced map

φp : Y \Z → P1
C

a 7→ (p
(
Y
)
1
(a) : p

(
Y
)
2
(a)),

where Z = V (f, p
(
Y
)
1
, p
(
Y
)
2
) is the vanishing set of the ideal generated by f and the nu-

merator and denominator of p
(
Y
)
. The Zariski closure ‹Yp ⊆ A2

C × P1
C of the graph of φp then

satisfies:

(i) The projection map π : ‹Yp → Y induced by the first projection π : A2
C × P1

C → A2
C

is a proper birational morphism which is an isomorphism π : ‹Y \E → Y \Z outside
E = π−1(Z).

(ii) The projection π is injective.

(iii) ‹Yp is analytically irreducible at each point.
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(iv) We have the inclusion Sing(‹Yp) ⊆ π−1(Sing(Y )). In other words, all singular points of‹Yp lie over the singular points of Y.

(v) |Sing(‹Yp)| ≤ |Sing(Y )|.

Proof. (i): That π is a proper birational morphism follows from the fact that ‹Yp together with
the projection π : ‹Yp → Y is the blowup of Y in the ideal (f, p

(
Y
)
1
, p
(
Y
)
2
) (see [Ha14,

Definition 4.9.]) and from the properties of blowups, see e.g. [Ha77, Chapter II, Proposition
7.16]. That its restriction π : ‹Y \E → Y \Z is an isomorphism outside E = π−1(Z), follows
now immediately.
(ii): As π is an isomorphism outside E = π−1(Z), we only have to prove that π is injective on
E. Let us indirectly assume that there are two distinct points a, b in E with π(a) = π(b). Let
Ba and Bb be the branches of ‹Yp at the points a and b, respectively. Notice that as the points
a and b are distinct, the branches Ba and Bb are distinct as well. As Ba \ {a} and Bb \ {b}
are contained in ‹Yp \ E, the projection π is an isomorphism on them and thus, π(Ba \ {a}) =
π(Ba \ {a})∪ {π(a)} and π(Bb \ {b}) = π(Bb \ {b})∪ {π(b)} define two distinct branches of
Y at the point π(a) = π(b). This is a contradiction to the fact that Y is analytically irreducible
at each point.
(iii): As π is a birational morphism, and even an isomorphism outside the finite set π−1(Z),
the analytic branches of ‹Yp at a point b are uniquely determined by the images of the analytic
branches of Y at π(b) under the map

Y \Z → A2
C × P1

C, a 7→ a× φp(a).

As Y is unibranch at π(b), so is ‹Yp at b. This proves the analytical irreducibility of ‹Yp.
(iv): As the restriction

π : ‹Yp\E → Y \Z

is an isomorphism, for each point a /∈ Z we have:

π−1(a) ∈ Sing(‹Yp) if and only if a ∈ Sing(Y ).

Hence, it remains to discuss whether in the case that a ∈ Z, the point π−1(a) can be singular
although a is not. Let us assume that a is a smooth point of Y . Then, Y is locally at a a
manifold and as such biholomorphic to C via a parametrization γa(t) = (xa(t), ya(t)). As ‹Yp is
parametrized at π−1(a) by the vector γa(t)×

(
p1(γa(t)), p1(γa(t))

)
and as such biholomorphic

at π−1(a) to C as well, the point π−1(a) is non-singular.
(v): This is a consequence of items (ii) and (iv).

With Lemma 3.3, we obtain the following sufficient on a crucial height κ̃:

Corollary 3.4. If for a geometric invariant of plane curves p ∈ IF a parametrization γ(t) of X
at 0 exists with

ord
(
p(γ(t))

)
= 1,

then p is a crucial height of X at 0.
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Proof. According to (iv) and (v) of Lemma 3.3, ‹Xp has at most one singular point x̃ and it
is lying over the origin. Now, if ord

(
p(γ(t))

)
= 1, so is x̃ visible only in one affine chart

of A2
C × P1

C and equals the origin at this chart. The affine expression of ‹Xp in this chart is
parametrized by the triple

(
γ(t), p(γ(t))

)
∈ C{t}3, which is a regular parametrization and thus

the smoothness follows.

Thus, to resolve X is equivalent to construct a geometric invariant κ̃ ∈ IF which satisfies

ord
(
κ̃(γ(t))

)
= 1

for a suitably chosen parametrization γ(t) of X . The construction of a crucial height κ̃ is the
objective of the remaining part of this section.

Let us now discuss how the orders of algebraic curvatures evaluated at a parametrization
γ(t) = (x(t), y(t)), with n = ord(x(t)),m = ord(y(t)), behave. This will be of crucial
meaning for our final algorithm constructing a crucial height (as the algebraic curvatures build a
generating system of geometric invariants):

Remark 3.5. By induction, one can show the following equalities:

ord
(
κ0(γ(t))

)
= ord

Å
y′(t)

x′(t)

ã
= m− n,

ord
(
κi(γ(t))

)
= ord

Ç
∂tκi−1(η

χ(t))

x′(t)

å
= m− (i+ 1)n, for all i ≥ 1.

So for each higher algebraic curvature, the order of its evaluation at γ(t) drops by n compared
to the order of the previous one. We can iteratively even construct a geometric invariant κ̂ with

ord
(
κ̂(γ(t))

)
= gcd(n,m).

From now on, given a geometric invariant p ∈ IF , we will use the notation p for the vector
(∂ip)i≥0.

Euclidean Algorithm for Geometric Invariants Construction of a geometric invariant of order
at γ(t) equal to the greatest common divisor of orders at γ(t) of two other geometric invariants,
for γ(t) ∈ C[t]2 a polynomial pair

Input two geometric invariants p and q & a polynomial pair γ(t) ∈ C[t]2
Output pair of geometric invariants (κ̂1, κ̂2) with ord

(
κ̂1(γ(t))

)
= gcd(n,m), where

n = ord
(
p(γ(t))

)
and m = ord

(
q(γ(t))

)
, and with ord

(
κ̂2(γ(t))

)
= r, where r is the

penultimate non-zero remainder in the Euclidean algorithm applied to the pair (n,m),
or FAIL if either n and m both equal zero or p(γ(t)) · q(γ(t)) = 0 or if at least one of n and
m is negative
procedure GCD(p, q; γ(t))

1st step:
Set

n := ord
(
p(γ(t))

)
and m := ord

(
q(γ(t))

)
.

11



If 0 ≤ n,m <∞ not both equal to 0, then p(γ(t)), q(γ(t)) ∈ C{t} are both power series
different from zero and at least one of them has no constant coefficient. In this case we
continue with the 2nd step of the algorithm.
Otherwise, return FAIL.

2nd step:
We proceed according to the Euclidean algorithm. Let us write the Euclidean algorithm
for n and m as the sequence of following equations:

m = q0n+ r0

n = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

...

rN−2 = qNrN−1 + rN

rN−1 = qN+1rN + rN+1,

where 0 = rN+1 < rN = gcd(n,m) < rN−1 < · · · < r0 < n.

Define now geometric invariants zi ∈ IF for 1 ≤ i ≤ N according to the Euclidean
algorithm and use Remark 3.5 to compute the orders of their evaluation at γ(t):

z0 := κqo−1(p, q) ord
(
z0(γ(t))

)
= r0,

z1 := κq1−1(z0, p) ord
(
z1(γ(t))

)
= r1,

z2 := κq2−1(z1, z0) ord
(
z2(γ(t))

)
= r2,

...
...

zN := κqN−1(zN−1, zN−2) ord
(
zN (γ(t))

)
= rN ,

where in the case q0 = 0 we set
κ−1(p, q) := q.

We return
(zN , zN−1).

Example 3.6. Let us consider the geometric invariants p = x(0) and q = κ0 and a Puiseux
parametrization γ(t) = (t3, t8). Let us for the orders

5 = ord
(
q(γ(t))

)
= ord

Å
y′(t)

x′(t)

ã
= ord

Å
8t7

3t2

ã
= ord

Å
8

3
t5
ã
,

3 = ord
(
p(γ(t))

)
= ord(x(t)) = ord(t3),

12



write the Euclidean algorithm and construct:

5 = 1 · 3 + 2 z0 = κ0(x
(0), κ0)

3 = 1 · 2 + 1 z1 = κ0(z0, x
(0))

2 = 2 · 1 + 0

Then
z0 =

∂κ0

x(1)
= κ1,

and

z1 = κ0(κ1, x
(0)) =

x(1)

∂κ1
= κ−12 .

With Remark 3.5 we see immediately that ord
(
z1)(γ(t))

)
= 1.

The strategy now is the following: for a Puiseux parametrization η(t) of X at 0, we want to
go through all its characteristic exponents β1, . . . , βg (see Appendix A for their definition) and
construct inductively geometric invariants p1, . . . , pg ∈ IF whose evaluation at η(t) have orders
e1 = gcd(n, β1), . . . , 1 = eg = gcd(n, β1, . . . , βg), respectively. To do so, we will have to
combine our last algorithm with triangular coordinate changes:

Triangular Coordinate Change for Plane Curves Elimination of the first terms of the evalu-
ation of a geometric invariant at γ(t), for γ(t) ∈ C[t]2, that have degrees divisible by the order
of the evaluation of another geometric invariant at γ(t)

Input polynomial pair γ(t) ∈ C[t]2 & two geometric invariants p and q so that
q(γ(t)) /∈ C[p(γ(t))] and 0 < ord

(
p(γ(t))

)
, ord

(
q(γ(t))

)
<∞

Output geometric invariant z = q − (c1p+ · · ·+ ckp
k), for some k ∈ N and ci ∈ C

satisfying ord
(
p(γ(t))

)
- ord

(
z(γ(t))

)
procedure TRIAN(p, q; γ(t))

1st step:

Set
y0 := q and n := ord

(
p(γ(t))

)
, m0 := ord

(
q(γ(t))

)
.

2nd step:

Consider the geometric invariant yi−1 and the corresponding order mi−1 := ord
(
yi−1(γ(t))

)
.

If n - mi−1 then return yi−1.

Otherwise continue with the next step of the algorithm.

3rd step:

Set
yi := yi−1 − pqi−1 ,

13



where
mi−1 = n · qi−1,

and go back to the 2nd step of the algorithm.

Finally, we present our resolution algorithm for plane curves with one singularity at the
origin:

Resolution Algorithm for Plane Curves - One Singularity Construction of a crucial height
Input polynomial pair γ(t) = (tn, y(t)) ∈ C[t]2
Output geometric invariant κ̃ satisfying ord

(
κ̃(γ(t))

)
= gcd

(
n, i : i ∈ supp(y(t))

)
procedure PLANECURVATURE(γ(t))

1st step:
If n ≤ ord(y(t)), then define

x0 := x(0), y0 := y(0) and m0 := ord(y(t)), n0 := n.

otherwise
x0 := y(0), y0 := x(0) and m0 := n, n0 := ord(y(t)).

Further set
α := gcd

(
n, i : i ∈ supp(y(t))

)
.

2nd step:

Assume that xi−1, yi−1 and ni−1,mi−1 have been already constructed. If ni−1 = α, then
return xi−1.

Otherwise continue with the next step of the algorithm.

3rd step:

Define
Yi := TRIAN(xi−1, yi−1; γ(t)) and Mi := ord

(
Yi(γ(t))

)
.

4th step:

Set
(xi, yi) := GCD(xi−1, Yi; γ(t)) and mi := ord

(
yi(γ(t))

)
.

Then, the geometric invariant xi satisfies

ord
(
xi(γ(t))

)
= gcd(ni−1,Mi)

and we set
ni := ord

(
xi(γ(t))

)
.

Turn back to the 2nd step of the algorithm.
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Termination of the algorithm PLANECURVATURE:

Let us first discuss the case when γ(t) = (tn, y(t)) is a Puiseux parametrization of a plane
algebraic curve, i.e., n ≤ ord(y(t)) and gcd

(
n, i : i ∈ supp(y(t))

)
= 1. Show that in this case

the algorithm constructs already a crucial height of the curve parametrized by γ(t). The general
case then follows by a suitable variable substitution and reparametrization.

1. γ(t) is a Puiseux parametrization:
Observe first that the algorithm terminates in the 1st step if and only if n = 1, which
would mean that the curve parametrized by γ(t) is smooth at the origin and the variable
x0 is a crucial height of the curve. Let us therefore consider a Puiseux parametrization
γ(t) = (tn, y(t)) with n > 1.

The goal is to show that we have n1 < n0. Then, the claim follows by induction. First ob-
serve, that the Puiseux characteristic does not change under triangular coordinate changes.
Further we have:

Theorem 3.7. Let η(t) = (tn, y(t)) ∈ C[t]2 be a Puiseux parametrization of a branch at
0. Let (n|β1, . . . , βg) be the Puiseux characteristic of the branch. Assume that ord(y(t)) =
β1. Let k = bβ1n c. Then the Puiseux characteristic of the branch parametrized by the pair
(κk−1(η(t)), t

n) equals

(i) (β1 − kn|n, β2 − β1 + n, . . . , βg − β1 + n) if (β1 − kn) - n,
(ii) (β1 − kn|β2 − β1 + n, . . . , βg − β1 + n) if (β1 − kn)|n.

Proof. The statement can be proven by the same argument as Theorem 3.5.5 in [Wa04].

It follows directly from the definition of the individual steps of the algorithm PLANECUR-
VATURE, that we have

n1 ≤ β1 − kn < n = n0,

which proves the termination of the algorithm applied to a Puiseux parametrization.

2. γ(t) is not a Puiseux parametrization:
In this case we have two possibilities:

a) either gcd
(
n, i : i ∈ supp(y(t))

)
= 1 but n > m = ord(y(t)),

b) or gcd
(
n, i : i ∈ supp(y(t))

)
= α > 1.

In the case a), after a suitable reparametrization we obtain a Puiseux parametrization ((x◦
ϕ)(t), tm) of the branch to which our above analysis applies.

In the case b), there exists a Puiseux parametrization γ̃(t) of the branch parametrized by
γ(t) such that γ(t) = γ̃(tα). Moreover, using the fact that for each geometric invariant
p ∈ IF , we have p(γ(t)) = p(γ̃(t))|t=tα (for more details see [Me20b]) we conclude

PLANECURVATURE(γ(t)) = PLANECURVATURE(γ̃(t))|t=tα = tα.

15



Example 3.8 (Construction of a crucial height with the algorithm PLANECURVATURE). Con-
sider the curve

X = {−x3 + (3y2 − 6y + 1)x2 + (−3y4 − 2y3)x+ y6 = 0}.

The pair
γ(t) = (t6, t2 + t3)

defines a parametrization ofX at 0. We construct now κ̃ = PLANECURVATURE(γ(t)) according
to the algorithm.

1st step: x0 = y(0), y0 = x(0), n0 = ord(t2 + t3) = 2,m0 = ord(t6) = 6, α = gcd(6, 2, 3) = 1.

2nd step: Since n0 = 2 6= 1 = α, we continue with the next step.

3rd step: As n0|m0, a triangular coordinate change is necessary. We define

Y1 = TRIAN(x0, y0; γ(t)) = y0 − x30

and

M1 = ord
(
Y1(γ(t))

)
= ord(t6 − (t2 + t3)3) = ord(−3t7 − 3t8 − t9) = 7.

4th step: We compute the geometric invaraint whose evaluation at γ(t) is of order gcd(2, 7) = 1.
We follow the Euclidean Algorithm for 2 and 7:

7 = 3 · 2 + 1 x1 = κ2(x0, Y1) n1 = ord
(
x1(γ(t))

)
= 1

2 = 1 · 2 + 0

A computation shows that

x1 = κ2(y
(0), x(0))− 6.

5th step: As n1 = 1 we stop here and return

κ2(y
(0), x(0))− 6.

Thus, for a plane algebraic curve X ⊆ A2
C with only one singular point 0 ∈ X and only one

analytic branch at the origin, we have just proven the following theorem:

Theorem 3.9. For any Puiseux parametrization η(t) ofX at the origin, the algorithm PLANECUR-
VATURE applied to the characteristic part ηχ(t) of η(t) constructs a crucial height of X , i.e., a
geometric invariant κ̃ that satisfies

ord
(
κ̃(η(t))

)
= 1.

Moreover, the blowup of X in the ideal (κ̃(X)1, κ̃(X)2) defines a resolution of singularities of
X .

In this section we established an algorithm only for resolution of plane algebraic curves with
only one singular point. The resolution of plane curves with several singularities is discussed in
Section 5 of this article.
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4 Resolution of Analytically Irreducible Singular Space Curves
with only one Singularity

We present in this section an algorithm for resolution of analytically irreducible space curves
with a single singular point. Our algorithm is, as in the plane curve case, based on the existence
of characteristic exponents of Puiseux parametrizations. Given an algebraic space curve X ⊆
An+1
C with only one singularity at the origin and only one analytic branch at the origin, our

algorithm constructs a geometric invariant of space curves κ̃ satisfying the property

ord
(
κ̃(γ(t))

)
= 1, (3)

for at least one parametrization γ(t) ∈ C[[t]]n+1 of X at the origin.

Definition 4.1. We call a geometric invariant κ̃, that satisfies the property (3), a crucial height
of X (at the origin).

Given a Puiseux parametrization γ(t) of X at 0, the strategy of our algorithm is to project
the space curve X to the coordinate planes and using the algorithm PLANECURVATURE there to
construct for each projection a geometric invariant of minimal possible order (when evaluating at
γ(t)). The orders of the evaluations of these geometric invariants at γ(t) contain by construction
a complete information about the Puiseux characteristic of each projection. Moreover, their
greatest common divisor should be, by construction, equal one.

To be more precise: Let X ⊆ An+1
C be a space algebraic curve with only one singular point

0 ∈ X . Let us assume that X is analytically irreducible at 0. Let I ⊆ C[x1, . . . , xn, y] be an
ideal defining X . As in the case of plane curves, we will construct a resolution ‹X of X via a
blowup in a suitable ideal I+(κ̃

(
X
)
1
, κ̃
(
X
)
2
) defined in X by the numerator and denominator

of an implicit expression of a crucial height κ̃.
The resolution ‹X again equals the Zariski closure ‹Xκ̃ of the graph of the map induced by

the crucial height κ̃:

φκ̃ : X\Z → P1
C

a 7→ (κ̃
(
X
)
1
(a) : κ̃

(
X
)
2
(a)),

with Z = V
(
I + (κ̃

(
X
)
1
, κ̃
(
X
)
2
)
)
. Notice that Lemma 3.3 generalizes also to the space curve

case and the same holds also for Corollary 3.4 — both proofs go along the same line as for plane
curves. Thus, a crucial height of X yields already a resolution of X .

Let us w.l.o.g. assume that x /∈ I and yj /∈ I for each j = 1, . . . , n (otherwise we embed the
curve in AnC). Then according to Theorem A.2, X admits a parametrization

η(t) = (x(t), y1(t) . . . , yn(t)) = (tl, y1(t) . . . , yn(t)) ∈ C{t}n+1

at the origin for some l ∈ N. Let us w.l.o.g. assume that l ≤ min{ord(yi(t)) : i = 1, . . . , n}
(otherwise apply an affine coordinate change), i.e., that η(t) is a Puiseux parametrization of X
at 0. As already mentioned, the strategy of our algorithm is to project the curve X with the n
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projections

πi : An+1
C → A2

C

(x, y1, . . . , yn) 7→ (x, yi)

to plane curves Xi parametrized by ηi(t) = (tl, yi(t)) at the origin and to apply the algorithm
PLANECURVATURE to these projections in order to construct for each of the parametrizations
ηi(t) a geometric invariant of minimal possible order. More precisely:

Remark 4.2. Let ηχ(t) be the characteristic part of the Puiseux parametrization η(t). Then,

ηi(t) itself is not a Puiseux parametrization, but ηi(t) can be written as η̃i(t
l
li ) for some Puiseux

parametrization η̃i(t) of the branch parametrized by ηi(t) and some divisor li of l. Notice, that li
is the multiplicity of η̃i(t). Thus l is the product of the multiplicities li of Puiseux parametriza-
tions of branches that are parametrized by ηi(t) = (tl, yi(t)) (for more details see Appendix A),
i.e., l =

∏
i li. By construction, we have

ord
Ä(

PLANECURVATURE(γi(t)
)
(γi(t))

ä
=

l

li
.

Resolution Algorithm for Space Curves - one Singularity Construction of a crucial height
Input polynomial pair γ(t) = (tl, y1(t), . . . , yn(t), ) ∈ C[t]n+1 & the embedding
dimension N = n+ 1
Output geometric invariant κ̃ satisfying
ord
(
κ̃(γ(t))

)
= gcd

(
l, i1, . . . , in : ij ∈ supp(yj(t))

)
procedure SPACECURVATURE(γ(t);N)

1st step:
Let m = min{l, ord(yj(t)) : j = 1, . . . , n}. If m = 1, then return®

x(0) if l = 1

y
(0)
j if ord(yj(t)) = 1

Else, if m = l, then set

x := x(0), y1 := y
(0)
1 , . . . , yN−1 := y

(0)
N−1.

Otherwise, if yj(t) is the component of γ(t) satisfying m = ord(yj), then we set

x := y
(0)
j , y1 := y

(0)
1 , . . . yj−1 := y

(0)
j−1, yj := x(0), yj+1 := y

(0)
j+1, . . . , yN−1 := y

(0)
N−1.

2nd step:

For each i = 1, . . . , N − 1, set

zi := PLANECURVATURE
(
x(γ(t)), yi(γ(t))

)
.
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For each i = 1, . . . , N − 1, we apply the substitution

λi : C(x(j), y(j) : j ∈ N)→ C(x(j), y(j)i : i, j ∈ N, 1 ≤ i ≤ n)
x(j) 7→ ∂jx

y(j) 7→ ∂jyi

in order to obtain geometric invariants of space curves

zi := λi(zi)

of order at γ(t) equal to
ni := ord(zi(γ(t))).

3rd step:

Define iteratively and observe

z̃2 := GCD(z1, z2; γ(t)) ord
(
z̃2(γ(t))

)
= gcd(n1, n2),

z̃3 := GCD(̃z2, z3; γ(t)) ord
(
z̃3(γ(t))

)
= gcd(n1, n2, n3),

...
...

z̃N−1 := GCD(̃zN−2, zN−1; γ(t)) ord
(
z̃N−1(γ(t))

)
= gcd(n1, . . . , nN−1).

Finally, return z̃N−1.

Correctness of the algorithm SPACECURVATURE:
In fact, by construction, by the properties of the algorithm PLANECURVATURE, and by the same
arguments we used to prove the correctness of the algorithm PLANECURVATURE, the order of
κ̃ = SPACECURVATURE(γ(t);N) at γ(t) satisfies

ord(κ̃(γ(t))) = gcd
(
l, i1, . . . , in : ij ∈ supp(yj(t))

)
= 1.

Thus, for an algebraic space curveX ⊆ An+1
C with only one singularity 0 ∈ X and only one

analytic branch at the origin, we have just proven the following theorem:

Theorem 4.3. For the characteristic part ηχ(t) of a Puiseux parametrization η(t) = (x(t), y1(t), . . . , yn(t))
of X at the origin, the algorithm SPACECURVATURE constructs a crucial height of X , i.e., a
geometric invariant κ̃ that satisfies

ord
(
κ̃(η(t))

)
= 1.

Moreover, for I ⊆ C[x1, . . . , xn, y] a defining ideal of X , the blowup of X in the ideal(
I + (κ̃

(
X
)
1
, κ̃
(
X
)
2
)
)

defines a resolution of singularities of X .

However, the algorithm SPACECURVATURE constructs a resolution only for analytically ir-
reducible space curves with only one singular point. If X has more than one singular point,
iterations of the algorithm SPACECURVATURE are needed as we will see in the next section.
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5 Resolution of Analytically Irreducible Singular Plane and Space
Curves with more than one Singularity

Let us fix a plane or space curve X ⊆ An+1
C , n ≥ 1, with m singular points

Sing(X) = {a1, . . . , am}.

Let I ⊆ C[x, y1 . . . , yn] be a defining ideal ofX . Let us assume thatX is analytically irreducible
at each point. The goal of this section is to present an algorithm for construction of a resolution
ofX based on the algorithms PLANECURVATURE and SPACECURVATURE presented in Sections
3 and 4, respectively.

Let us fix for each i = 1, . . . ,m, a Puiseux parametrization ηi(t) ∈ C{t}n+1 of X at the
singular point ai. Further, consider for each i the following coordinate change:

λai : A
n+1
C → An+1

C
(x, y1, . . . , yn) 7→ (x, y1, . . . , yn)− ai,

under which ai moves to the origin. Let us further denote by Xai the image of the curve X
under λai . Then, ηi(t) − ai = (xi(t), yi,1(t), . . . , yi,n(t)) is a Puiseux parametrization of Xai

at 0. Let us w.l.o.g. assume that xi(t) 6= 0 and yi,j(t) 6= 0 is fulfilled for all i, j (otherwise we
could embed X in AnC).

We now present an algorithm that constructs with SPACECURVATURE for each singular point
ai onX a crucial height κ̃i =

κ̃i,1
κ̃i,2

ofXai at 0 which is at the same time also a crucial height ofX

at ai. The claim is that for γ(t) a parametrization ofX , the curve in An+1
C ×(P1

C)
m parametrized

by the vector

γ̃(t) = γ(t)×
(
κ̃i,1(γ(t)) : κ̃i,2(γ(t))

)
× · · · ×

(
κ̃m,1(γ(t)) : κ̃m,2(γ(t))

)
defines a resolution of singularities of X .

Resolution Algorithm - Several Singularities Construction of a crucial curvature at each sin-
gular point

Input number of singularities m & for each i = 1, . . . ,m the characteristic part
ηχi (t) = ai + (xi(t), yi,1(t), . . . , yi,n(t)) ∈ C[t]n+1 of a Puiseux parametrization of X at ai
& the embedding dimension N = n+ 1
Output vector κ̃ = (κ̃1, . . . , κ̃m) of geometric invariants satisfying ord

(
κ̃i(ηi(t))

)
= 1

procedure CURVATURES(ηχ1 (t), . . . , η
χ
m(t) ;m,N)

For each i = 1, . . . ,m compute

κ̃i := SPACECURVATURE(ηi(t)− ηi(0) ;N).

Finally return the list
(κ̃1, . . . , κ̃k).
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Correctness of the algorithm CURVATURES:
We have

κ̃i(ηi(t)) = κ̃i(ηi(t)− ηi(0)),

for each i = 1, . . . , n, and so ord
(
κ̃i(ηi(t))

)
= 1.

Let κ̃ = (κ̃1, . . . , κ̃m) = CURVATURES(ηχ1 (t), . . . , η
χ
k (t);m,n + 1) be the list of crucial

curvatures produced by the algorithm CURVATURES. Consider the map

φκ̃ : X\Z → (P1
C)
m

a 7→
(
κ̃1
(
X
)
1
(a) : κ̃1

(
X
)
2
(a)
)
× · · · ×

(
κ̃m
(
X
)
1
(a) : κ̃m

(
X
)
2
(a)
)
,

where Z = V
(
I + (κ̃i

(
X
)
j
: 1 ≤ i ≤ m, j = 1, 2)

)
and where κ̃i

(
X
)
j

denote the numerator

for j = 1 and the denominator for j = 2 of an implicit expression of κ̃i, respectively. Let ‹Xκ̃

denote the Zariski closure of the graph of the map φκ̃.

Proposition 5.1. The projection morphism

π : ‹Xκ̃ → X

induced by the projection π : An+1
C × (P1

C)
m → An+1

C is a birational and projective morphism
which is an isomorphism

π : ‹Xκ̃\E → X\Z

outside E = π−1(Z), where Z = V
(
I + (κ̃i

(
X
)
j
: 1 ≤ i ≤ m, j = 1, 2)

)
.

Proof. For each 1 ≤ l ≤ m, we denote by ‹X l
κ̃ the Zariski closure of the graph of the map

φlκ̃ : X\Zl → (P1
C)
l

a 7→ (κ̃1
(
X
)
1
(a) : κ̃1

(
X
)
2
(a))× . . . (κ̃l

(
X
)
1
(a) : κ̃l

(
X
)
2
(a)),

with Zl = V
(
I + (κ̃i

(
X
)
j

: 1 ≤ i ≤ l, j = 1, 2)
)
. Notice that each map πl : ‹X l

κ̃ → X

induced by the projection An+1
C × (P1

C)
l → An+1

C defines a birational morphism and moreover
an isomorphism πl : ‹X l

κ̃\El → X\Zl outside El = π−1l (Zl) with the inverse map given by
a 7→ a × φlκ̃(a). We proceed now by induction on l to show that πl is projective for each
l = 1, . . . ,m. For l = 1, X1

κ̃ is the blowup of X in the ideal (I + (κ̃1
(
X
)
1
, κ̃1
(
X
)
2
)
)

and the
claim follows directly. For l+1, we observe that ‹X l+1

κ̃ is the Zariski closure of the image of the
map ‹X l

κ̃\V
(
I + (κ̃l+1

(
X
)
1
, κ̃l+1

(
X
)
2
)
)
→ An+1

C × (P1
C)
l × P1

C

induced by the geometric invariant κ̃l+1. The claim follows now from the induction hypothesis
on ‹X l

κ̃.

Moreover, using [Ha77, Chapter II, Theorem 7.17.] the following corollary follows:
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Corollary 5.2. There exists an ideal J ⊆ C[x, y1, . . . , yn] such that the curve ‹Xκ̃ together with
the projection π : ‹Xκ̃ → X is a blowup of X in the ideal J .

Thus, we have proven resolution of singularities of X via the map φκ̃:

Theorem 5.3. The Zariski closure ‹Xκ̃ of the graph of φκ̃ defines together with the projection
morphism π : ‹Xκ̃ → X a resolution of singularities of X .

6 Analytically Reducible Singular Curves

The algorithms presented in Sections 3, 4 and 5 were constructed in order to resolve analytically
irreducible curves and unfortunately do not give a resolution of curves with several analytic
branches at their singular points. In fact, it is not clear for the moment how to use geometric
invariants for resolution of analytically reducible curves. Whereas it is very easy to use the slope
of the tangent vector to separate two transversal branches, it is in general not clear how to use
the (higher) algebraic curvatures to separate two analytic branches that meet tangentially, as the
illustrated in the following example:

Example 6.1. Let us consider the (even algebraically, not only analytically) reducible plane
curve X defined as the union of two parabolas X1 and X2 given by their respective equations
x = y2 and y = −x2 and parametrized by γ1(t) = (t2, t) and γ2(t) = (−t2, t), respectively.

x = y2x = −y2

Figure 3: Two symmetric horizontal parabolas x = y2 (blue) and x = −y2 (red) meeting at the
origin.

Then the evaluation κi(γj(t)), with j = 1, 2, of each algebraic curvature at γj(t) is a Laurent
series of order −2i− 1 and, moreover, we have the equality

κi(γ1(t)) = (−1)i+1κi(γ2(t)).

The (higher) algebraic curvatures are therefore not able to distinguish between both curves at
the origin and hence are also not able to tear them apart.

Therefore, to establish a resolution of analytically reducible curves by means of geometric
invariants, a more refined method would be necessary. This problem remains for the moment on
a list with open questions for the moment.
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A Puiseux Parametrizations

In this section we introduce some terminology concerning Puiseux parametrizations of algebraic
curves (plane curves in A2

C and also space curves in An+1
C ) and collect some basic facts about

them which play a crucial role in our resolution algorithms presented in Sections 3, 4 and 5. All
facts about Puiseux parametrizations of plane algebraic curves and their analytic branches listed
here are standard and can be found for example in E. Casas-Alvero’s book [Ca00, Chapter 1] or
in C. T. C. Wall’s book [Wa04, Chapter 3]. For the construction of Puiseux parametrizations of
space curves we refer to J. Maurer’s work [Ma80].

Let us start by recalling some facts about y-roots of bivariate power series and the Puiseux
parametrizations of plane curves. Let f ∈ C{x, y} be a bivariate holomorphic power series with
f(0, 0) = 0 and f(0, y) 6= 0. And assume that f is irreducible. (In case of a reducible power
series f , one has to look at its irreducible components.) Then Puiseux’ Theorem states that if we
want to solve the equation f(x, y) = 0 for y in terms of x, then there always exists a solution
which is fractionary power series in x, i.e., a power series in x with fractional exponents with
bounded denominator, called a Puiseux series. In other words:

Newton-Puiseux theorem. For any power series f ∈ C{x, y} with zero constant term and with
f(0, x) 6= 0, there exists a pair convergent of power series

(x(t), y(t)) = (tn,
∑
i≥1

ait
i) ∈ C{t}2,

for some n ∈ N, such that f(x(t), y(t)) = 0.

Each such pair (x(t), y(t)) = (tn, y(t)) = (tn,
∑

i≥1 ait
i) of power series with minimal

integer n satisfying f(tn, y(t)) = 0 can be constructed using Newton-Puiseux algorithm. By
the minimality here we mean that the values of i with ai 6= 0, together with n, have the greatest
common divisor equal to 1. This allows us to define the following set:

β1 := min{i : ai 6= 0 and n - i}, (4)

e1 := gcd(n, β1)

βj+1 := min{i : ai 6= 0 and ej - i},
ej+1 := gcd(n, β1, . . . , βj+1).

Let g be the minimal integer satisfying eg = 1. The numbers β1, . . . , βg are then called the char-
acteristic exponents of (x(t), y(t)). In the case that n additionally satisfies n ≤ m = ord(y(t)),
we call the pair (x(t), y(t)) a Puiseux parametrization of the the analytic curve defined by f at
0 and the sequence of integers

(n|β1, . . . , βg)

its Puiseux characteristic. In this case, n equals the order of f and is called the multiplicity of
the curve. Further, we define

(x(t), y(t))χ(t) := (tn,

βg∑
i=1

ait
i)
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and call it the characteristic part of the Puiseux parametrization (x(t), y(t)).
If n > m = ord(y(t)), we parametrize the curve by the pair (x(t), tm) and take the charac-

teristic exponents of this parametrization andm to define the Puiseux characteristic of the curve.
It follows directly form the Newton-Puiseux algorithm and also from [Wa04, Lemma 3.5.4 and
the proof of Theorem 3.5.5], that in the case that n = m, the Puiseux characteristic does not
depend on the choice of a Puiseux parametrization. Hence, it is a local invariant of the curve.

Example A.1. Let ξ be a primitive 6-th root of unity. Then it can be shown that the polynomial

f(x, y) =
6∏
i=1

(y − ξ3ix1/2 + 2ξ4ix2/3 + 3ξ5ix5/6)

=x6 − 3x4y − 56x3y2 − 162x2y3 + 972xy4 − 729y5 + 3x2y2 + 120xy3 + 730y4 − y3

is analytically irreducible, i.e., irreducible as a power series, and that the pair

γ(t) = (t6, t3 − 2t4 − 3t5)

parametrizes the curve X defined by f . Notice that gcd(6, 3, 4) = 1, hence, the characteristic
exponents of γ(t) are 3 and 4. However, γ(t) is not a Puiseux parametrization of the curve.
After reparametrizing γ(t) suitably, we obtain the Puiseux parametrization

η(t) = (t6 + 4t7 +
62

3
t8 + . . . , t3)

of X . η(t) has only one characteristic exponent, namely 7. Thus, the Puiseux characteristic of
X equals

(3|7).

The classical Newton-Puiseux algorithm constructs parametrizations only for plane alge-
braic curves and their analytic branches. However, since Puiseux’ study of fractional power
series, several generalizations of the algorithm for solving more general systems of polynomial
equations were established. In 1980, J. Maurer gave in his paper [Ma80] a constructive proof for
the existence of parametrizations of space curves, i.e., he solved the problem of finding yi-roots
of a system of convergent power series

fj(x, y1, . . . , yn) = 0 (5)

defining an analytic space curve and gave an algorithm constructing all its parametrizations
of the form γ(t) = (tl, y1(t), . . . , yn(t)) ∈ C{t}n+1. Another proof of the existence of yi-
roots of (5) can for instance be found in the paper [JMM08] by A. N. Jensen, H. Markwig and
T. Markwig.

Theorem A.2. Let I ⊆ C{x, y1, . . . , yn} be an ideal defining a branch of an algebraic space
curve at 0. Suppose that x /∈ I and yj /∈ I for any 1 ≤ j ≤ n. Then this branch can be
parametrized by γ(t) = (tl, y1(t), . . . , yn(t)) for some l ∈ N and convergent power series
yj(t) ∈ C{t}n+1 for j = 1, . . . , n.
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Moreover, similarly as in the plane curve case, for a an analytic space curve Y in An+1
C ,

with 0 ∈ Y , one can always construct a parametrization γ(t) = (tl, y1(t), . . . , yn(t)) with l
minimal, i.e., l has no non-trivial divisor with the set of all exponents appearing in the power
series expansions of y1(t), . . . , yn(t). We call a parametrization γ(t) of Y , which is (up to
permutation of the components of the parametrization) of the form γ(t) = (tl, y1(t), . . . , yn(t)),
with l ≤ min{ord(yi(t)) : i = 1, . . . , n}, a Puiseux parametrization of Y . Let us consider the
analytic plane curves Yi parametrized by the tuples γi(t) = (tl, yi(t)) for i = 1, . . . , n. Then for
each i = 1, . . . , n, there exists a Puiseux parametrization ηi(t) = (tli , ỹi(t)) of the curve Yi so

that γi(t) = ηi(t
l
li ). Thus, l is the product of the multiplicities li of the Puiseux parametrizations

of the curves Yi. Let, further, (ni|βi,1, . . . , βi,g) be the Puiseux characteristic of Yi. Notice, that
by the minimality of l we have

gcd

Å
l,
l

li
· βi,1, . . . ,

l

li
· βi,g : i = 1, . . . , n

ã
= 1.

LetM := max{ lli ·βi,1, . . . ,
l
li
·βi,g : i = 1, . . . , n}. We then define for the Puiseux parametriza-

tion γ(t) its characteristic part by

γχ(t) :=

(
tl,

M∑
i=1

a1,it
i, . . . ,

M∑
i=1

an,it
i

)
,

where each yj(t), j = 1, . . . , n has its power series expansion equal to
∑

i≥1 aj,it
i.
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