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APPROXIMATE COMPLETELY POSITIVE SEMIDEFINITE RANK

PARIA ABBASI, ANDREAS KLINGLER, AND TIM NETZER

Abstract. In this paper we provide an approximation for completely positive semidef-
inite (cpsd) matrices with cpsd-rank bounded above (almost) independently from the
cpsd-rank of the initial matrix. This is particularly relevant since the cpsd-rank of a
matrix cannot, in general, be upper bounded by a function only depending on its size.

For this purpose, we make use of the Approximate Carathéodory Theorem in order to
construct an approximate matrix with a low-rank Gram representation. We then employ
the Johnson-Lindenstrauss Lemma to improve to a logarithmic dependence of the cpsd-
rank on the size.

1. Introduction

The maximal angle between vectors from some nonnegative orthant Rd
+ is π/2. If finitely

many such nonnegative vectors v1, . . . , vn are given, the (entrywise nonnegative) matrix

M = (〈vi, vj〉)i,j=1,...,n

is called a completely positive matrix. So the possible combinations of angles between tuples
of nonnegative vectors is encoded in the convex cone of all completely positive matrices.
The cone of completely positive matrices has numerous applications in control theory and
general optimization, among others. It has been intensively studied, see for example [2].

When putting a nonnegative vector on the diagonal of a quadratic matrix, one obtains
a special positive semidefinite matrix. Now a canonical non-commutative/quantum gener-
alization of completely positive matrices arises by choosing A1, . . . , An from some cone of
positive semidefinite matrices, and considering the matrix

M = (〈Ai, Aj〉)i,j=1,...,n

where we use the trace inner product for matrices. Such matrices are called completely

positive semidefinite. So the cone of completely positive semidefinite matrices encodes the
possible angles between tuples of positive semidefinite matrices. These cones allow for a
conic optimization approach to quantum correlations and quantum graph colorings, for
example [9, 11].
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2 APPROXIMATE COMPLETELY POSITIVE SEMIDEFINITE RANK

Note that the angle between two general positive semidefinite matrices is also at most
π/2, so both completely positive and completely positive semidefinite matrices have non-
negative entries.

As it happens often, the non-commutative/quantum analogue is much more challenging
to understand than the commutative/classical version. For example, the cone of completely
positive matrices is closed, whereas the cone of completely positive semidefinite matrices
have recently been shown not to be closed in general [5, 11, 16]. Also, to both kinds of
decompositions there is an associated rank, measuring the minimal size of the nonnegative
vectors/positive semidefinite matrices that are necessary to represent the given matrix.
Whereas the completely positive rank can be bounded in terms of the size n alone, this
fails for the completely positive semidefinite rank, as we will explain below. This significant
difference serves as the main motivation for this paper.

Our main result yields an approximation of completely positive semidefinite matrices
of relatively small completely positive semidefinite rank. This rank of the approximation
depends on the size n, the accuracy of the approximation, and a certain complexity of the
initial matrix. However, most importantly, it does not depend on its completely positive
semidefinite rank. We provide two such results, one being better for fixed approximation
error and n very large, the other better for fixed n and small approximation error.

The main ingredients of our proof are the Approximate Carathéodory Theorem and
the Johnson-Lindenstrauss Lemma. We will first approximate the initial matrix, using
the Approximate Carathéodory Theorem. This application will already establish the first
upper bound. In a second step, we will then further improve the approximation by applying
the Johnson-Lindenstrauss Lemma to the eigendecomposition of the positive semidefinite
matrices in the representation. This will reduce the linear dependence on n of the upper
bound to a logarithmic dependence, and so establish the second upper bound.

Section 2 contains the essential preliminary material and an explanation of the fact why
the completely positive semidefinite rank cannot be bounded by n alone. Section 3 then
contains our main result and some examples.

2. Notations and preliminaries

We will first state some basic definitions and results used throughout this paper. Let [n]
be the set {1, . . . , n} and Sn be the space of all n×n real symmetric matrices (i.e. At = A)
endowed with the trace inner product:

〈A,B〉 = tr(BA) =

n
∑

i,j=1

AijBij.

The corresponding norm is known as the Frobenius norm: ‖A‖F =
√

〈A,A〉.
A non-empty subset C ⊆ Sn is called a convex cone if it is closed under nonnegative linear

combinations, i.e. for all α,α′ > 0 and for all c, c′ ∈ C we have αc + α′c′ ∈ C. Moreover,
C is called pointed, full-dimensional and closed, respectively, if C ∩ −C = {0}, if it has a
non-empty interior and if it is a closed set in the Euclidean topology, respectively. We call
a convex cone with these three properties a proper cone. Given a convex cone C ⊆ Sn, its
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dual cone is defined as

C∗ := {A ∈ Sn : 〈A,B〉 > 0 for all B ∈ C}

and this is always a closed convex cone.
A real symmetric matrix A ∈ Sn is called positive semidefinite (psd for short, and

denoted by A < 0) if there exist vectors v1, . . . , vn ∈ Rd, for some d ∈ N, such that
A = (〈vi, vj〉)ni,j=1, where 〈·, ·〉 denotes the standard inner product on Rd. We also say that
the vectors v1, . . . , vn form a Gram representation of A. It is well-known that the smallest
possible d in a Gram representation of A coincides with its usual matrix rank rank(A). We
denote by Sn

+ the set of all n × n positive semidefinite matrices and it is well-known that
it is a proper and self-dual cone, i.e., Sn

+ = (Sn
+)

∗.
A real symmetric matrix A ∈ Sn is called doubly nonnegative if it is both positive semi-

definite and entrywise nonnegative. So this means that it admits a Gram representation
by vectors v1, . . . , vn ∈ Rd, for which the pairwise angles between the vi does not exceed
π/2, i.e. 〈vi, vj〉 > 0 for all i, j ∈ [n]. The set of all n × n doubly nonnegative matrices is
known to form a proper cone, which is denoted by DNN n.

A real symmetric matrix A ∈ Sn which has a Gram representation by entrywise nonneg-
ative vectors v1, . . . , vn ∈ Rd

+, for some d ∈ N, is called completely positive (cp for short).
The smallest possible such d is known as the cp-rank of A. It seems that the best general
upper bound on the cp-rank of an n× n cp-matrix is

(

n+ 1

2

)

− 4

see [15]. The difference of this upper bound to the best known lower bound has recently
been improved to O(n log log n), see [13]. The set of all n×n completely positive matrices
also forms a proper cone, denoted by CPn. The structure of the cone CPn has been
extensively studied (see for example [2]). Since every nonnegative vector can be considered
as a diagonal psd matrix, every cp matrix A ∈ CPn can also be written as

A = (〈xi, xj〉)ni,j=1 = (〈Di,Dj〉)ni,j=1,

where Di is the d × d matrix with xi as its diagonal. In particular, every Di is a positive
semidefinite matrix. At this point, it is natural to pass from diagonal psd matrices to
general psd matrices. In this way, we obtain the cone of completely positive semidefinite

matrices.

Definition 1. A matrix A ∈ Sn is called completely positive semidefinite (cpsd for short),
if it admits a Gram representation by psd matrices A1, . . . , An ∈ Sd

+, for some d > 1,
meaning

A = (〈Ai, Aj〉)ni,j=1 .

We denote the set of all n× n completely positive semidefinite matrices by CPSDn.

Lemma 2. The set CPSDn is a convex cone.
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Proof. Fix λ > 0 and let A ∈ CPSDn with Gram representation A1, . . . , An ∈ Sd
+. Then

consider the psd matrices
√
λA1, . . . ,

√
λAn ∈ Sd

+, which clearly form a Gram representa-
tion of the matrix λA. Therefore λA ∈ CPSDn.

Now let A be as before and let B ∈ CPSDn be another cpsd matrix with Gram
representation given by B1, . . . , Bn ∈ Sd′

+ for some d′ ∈ N. Now consider the matrices

A1 ⊕B1, . . . , An ⊕Bn ∈ Sd+d′

+ , where

Ai ⊕Bi :=

(

Ai 0
0 Bi

)

denotes the block-diagonal sum of Ai and Bi for each i ∈ [n]. For i, j ∈ [n] we clearly have

(A+B)ij = Aij +Bij = 〈Ai, Aj〉+ 〈Bi, Bj〉 = 〈Ai ⊕Bi, Aj ⊕Bj〉,
which proves A+B ∈ CPSDn. �

By definition, every completely positive matrix is also completely positive semidefinite.
Moreover, since the trace inner product of two psd matrices is nonnegative and every psd
matrix in the Gram representation of a cpsd matrix can be considered as a vector (by
stacking the columns on top of each other), we obtain the following inclusions:

(1) CPn ⊆ CPSDn ⊆ DNN n.

In addition, the cone CPSDn is pointed and full-dimensional, which directly follows from
the facts that the cone DNN n is pointed and the cone CPn is full-dimensional, respectively.
One of the challenging questions about the cone CPSDn is whether it is closed. For n 6 4,
it is known that CPn = CPSDn = DNNn (first proven in [10]), and hence CPSDn is
closed. On the other hand, for n > 5 both inclusions above are strict (see [6] and [7]).
Furthermore, by characterization of the closure of CPSDn-cone given in [4], together with
the example in [7], the chain of inclusions above can even be refined to (also shown in [9])

CPn ( CPSDn ⊆ cl(CPSDn) ( DNN n.

A recent breakthrough is [16], where it is shown that a certain affine section of the com-
pletely positive semidefinite cone is not closed, and hence the same holds for the cone
CPSDn itself, for n > 1942. The lower bound on n was improved in [5], where it was
subsequently shown that CPSDn is not closed even for n > 10. Hence, it remains an open
problem whether the cone is closed for n ∈ {5, 6, 7, 8, 9}.

As the CPSDn-cone is a generalization of the CPn-cone, it is also natural to extend the
notion of rank in the latter cone by replacing the nonnegative vectors with psd matrices.

Definition 3. The completely positive semidefinite rank of a matrix A ∈ CPSDn, denoted
by cpsd-rank(A), is the smallest d > 1 for which there exist psd matrices A1, . . . , An ∈ Sd

+

such that

A = (〈Ai, Aj〉)ni,j=1.

Remark 4. Instead of using real symmetric psd matrices A1, . . . , An ∈ Sd
+ in the Gram

representation of cpsd-matrices, one can also use complex Hermitian matrices A1, . . . , An ∈
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Hd
+. This gives rise to the same notion of cpsd-matrices, only decreases the cpsd-rank by

a factor of at most two. This can be seen by using the isometry

Hd −→ S2d; M 7−→ 1√
2

(

Re(M) −Im(M)
Im(M) Re(M)

)

which preserves positive semidefiniteness. We will restrict to the case of real symmetric
psd matrices from now on.

In the following, we introduce another notion of rank for cpsd-matrices, which will be
used in the proof of our main result.

Definition 5. Let A ∈ CPSDn. We define the Gram-cpsd-rank of A (denoted cpsd-
rankG(A)) as the smallest r > 1 for which there exists a Gram representation A1, . . . , An ∈
Sd
+, for some d ∈ N, with rank(Ai) 6 r for all i ∈ [n].

The next lemma shows the relationship between the two notions of cpsd-ranks. The
result is similar to Lemma 2.1 in [8] and Lemma 5 in [11], we include a proof for complete-
ness.

Lemma 6. Let A ∈ CPSDn. The following chain of inequalities holds:

cpsd-rankG(A) 6 cpsd-rank(A) 6 n · cpsd-rankG(A).

Proof. The first inequality is clear from the fact that the rank of a matrix is at most its
size. For the second let A1, . . . , An ∈ Sd

+ be a Gram representation of A ∈ CPSDn with
rank(Ai) 6 cpsd-rankG(A) for all i ∈ [n]. Then the rank r of the matrix

A′ :=

n
∑

i=1

Ai ∈ Sd
+

is at most n · cpsd-rankG(A). By the spectral theorem we obtain

A′ = ODiag(λ1, . . . , λr, 0, . . . , 0)O
t = ODOt

for some orthogonal matrix O and λi > 0 for all i ∈ [r]. Now we have

〈OtAiO,OtAjO〉 = Tr(OtAjOOtAiO) = Tr(AjAi) = 〈Ai, Aj〉 = Aij ,

thus the matrices OtA1O, . . . , OtAnO ∈ Sd
+ form a Gram representation for A as well.

From the fact that OtAiO < 0 for all i ∈ [n], and

n
∑

i=1

OtAiO = OtA′O =

(

Dr×r 0
0 0

)

it easily follows that each OtAiO has nonzero entries only in the upper left r × r-block as
well. When restricting to this upper left block we obtain a Gram representation of A with
psd matrices of size r, which shows that cpsd-rank(A) 6 r 6 n · cpsd-rankG(A). �
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As we have already seen above, the cpsd-rank is a natural non-commutative analogue
of the cp-rank. However, while the cp-rank is upper bounded by a function that depends
only on the matrix size, there is no general such upper bound on the cpsd-rank. There
are only some classes of completely positive semidefinite matrices for which there exists
an upper bound in terms of the matrix size. For instance, the authors in [11] and [8]
construct cpsd matrices of size 2n and 4n2 + 2n + 2 for all n > 1 with cpsd-rank being
2Ω(

√
n) and 2n, respectively. We now explain why this is impossible in general (for n > 10).

This observation follows directly from the non-closedness of the cpsd-cone, and is the main
motivation for the results in this paper. By the definition of the CPSDn-cone, going
through larger and larger size of the psd matrices in a Gram representation is a procedure
to produce all completely positive semidefinite matrices, and so we have

CPSDn =
⋃

r∈N
CPSDn

6r,

where
CPSDn

6r := {A = (〈Ai, Aj〉)i,j | A1, . . . , An ∈ Sr
+}.

Note that we have
CPSDn

6r ⊆ CPSDn
6r+1

for all r, since psd matrices of size r can be enlarged to size r + 1 without changing the
inner product, by adding a zero row and column.

Lemma 7. For each n, r > 1, the set CPSDn
6r is closed and semialgebraic.

Proof. Fix n, r > 1. Let
(

A(k)
)

k∈N be a sequence of matrices in CPSDn
6r converging to

some A ∈ Sn, which clearly means limk→∞A
(k)
ij = Aij for all i, j ∈ [n]. Now for each k ∈ N

there exist A
(k)
1 , . . . , A

(k)
n ∈ Sr

+ such that

A
(k)
ij = tr

(

A
(k)
i A

(k)
j

)

.

The converging sequence
(

A(k)
)

k
is bounded, in particular, all the diagonal entries

A
(k)
ii = tr

(

A
(k)
i A

(k)
i

)

=
∥

∥

∥
A

(k)
i

∥

∥

∥

2

are bounded. So without loss of generality, by using the Bolzano-Weierstrass Theorem

and the fact that Sr
+ is closed, we can assume that for each i ∈ [n] the sequence

(

A
(k)
i

)

k

converges to some Ai ∈ Sr
+, and hence for each i, j ∈ [n] we have

tr(AiAj) = lim
k→∞

tr
(

A
(k)
i A

(k)
j

)

= lim
k→∞

A
(k)
ij = Aij .

This shows that A1, . . . , An ∈ Sr
+ form a Gram representation forA, and thusA ∈ CPSDn

6r.
This proves closedness.

The membership of matrices in CPSDn
6r can be stated as a first order formula in the

language of ordered rings, using quantifiers. Indeed, the existence of the Gram representa-
tion is an existential formula, since the size of the Ai is bounded by r (the quantification
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is over the entries of the Ai). By quantifier elimination (see for example [12]) we conclude
that the set CPSDn

6r is indeed semialgebraic. �

Corollary 8. For n > 10 the cpsd-rank of elements from CPSDn are unbounded.

Proof. If the cpsd-rank admitted a bound, there would exist some r > 1 with CPSDn =
CPSDn

6r. Consequently, by Lemma 7, the cone CPSDn would be closed, which was shown
to fail in [5, 16] for n > 10. �

To prove our main result, we make use of an approximate version of Carathéodory’s
Theorem [1] and a variant of the Johnson-Lindenstrauss Lemma [17]. For a set P ⊆ Rd

we denote by conv(P ) the convex hull of P . Further, for k ∈ N we denote the set of all
convex combinations from P of length at most k by convk(P ). The (exact) Carathéodory
Theorem states that every element in a convex hull can be written as a convex combination
of at most d+ 1 elements. Hence, we have the following increasing chain of sets:

P = conv1(P ) ⊆ conv2(P ) ⊆ · · · ⊆ convd+1(P ) = conv(P ).

We now state an approximate version of Carathéodory’s Theorem with respect to the
2-norm [1].

Theorem 9 (Approximate Carathéodory Theorem). Let P ⊆ Rd be a bounded set and

ε > 0. Then for

k =

⌈

diam(P )2

2ε2

⌉

the set convk(P ) is ε-dense in conv(P ), meaning that for each a ∈ conv(P ) there exists

some b ∈ convk(P ) such that ‖a− b‖2 < ε.

Since entrywise 2-norm and Hilbert-Schmidt norm for matrices coincide, this directly
leads to the following rank approximation result for positive semidefinite matrices:

Corollary 10. Let A ∈ Sd
+. Then for every ε > 0 there exists a positive semidefinite matrix

B ∈ Sd
+ such that

tr(B) = tr(A),

‖A−B‖2 =
√

tr ((A−B)2) < ε,

and

rank(B) 6

⌈

tr(A)2

ε2

⌉

.

Proof. Consider the set

P :=
{

tr(A) · uut : u ∈ Rd, ‖u‖2 = 1
}

⊆ Sd
+.

By the eigenvalue decomposition of A it is immediate that A ∈ conv(P ). Further, it is easy
to check that

diam(P ) =
√
2tr(A),
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and thus Theorem 9 implies the existence of some B with
√

tr ((A−B)2) = ‖A−B‖2 < ε

which is a convex combination of at most

k =

⌈

tr(A)2

ε2

⌉

elements from P . Since each element in P is psd of rank 1 its trace is equal to tr(A), this
finishes the proof. �

We will later also use the following version of the Johnson-Lindenstrauss Lemma [17]:

Theorem 11 (Johnson-Lindenstrauss Lemma). Let 0 < ε < 1, {x1, . . . , xm} ⊆ Rd, and

set r :=
⌈

8 log(m+ 1)/ε2
⌉

. Then there exists a linear map Q : Rd → Rr such that

|xtixj − xtiQ
tQxj| 6 ε

(

‖xi‖22 + ‖xj‖22 − xtixj
)

for all i, j ∈ [m].

3. Main Result

We are now ready to state and prove our main result:

Theorem 12. Let M = (〈Ai, Aj〉)ni,j=1 ∈ CPSDn, set ℓ := maxi tr(Ai) and L := maxi Mii.

Then for every 0 < ε < 1
2 min{ℓ2, L} there exists some N ∈ CPSDn with

cpsd-rank(N) 6 min







n

⌈

9Lℓ2

2ε2

⌉

,
(6ℓ)4 log

(

n
⌈

18Lℓ2

ε2

⌉

+ 1
)

ε2







and

|Mij −Nij | < ε for all i, j ∈ [n].

Proof. By Corollary 10, for every i ∈ [n] there exists a psd matrix A′
i ∈ Sd

+ with tr(A′
i) =

tr(Ai) such that

‖Ai −A′
i‖2 < ε1 :=

√
L

(
√

1 +
ε

2L
− 1

)

and

rank(A′
i) 6

⌈

ℓ2

ε21

⌉

6

⌈

18Lℓ2

ε2

⌉

where we have used for the last inequality that

(2)
√
1 + x 6 1 +

x

2
− x2

9
for all 0 6 x 6

1

4
,
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applied to x = ε
2L . We define M ′ :=

(

tr
(

A′
iA

′
j

))n

i,j=1
and show that M ′ is an ε/2-

approximation of M. Indeed, for i, j ∈ [n] we have

(3)

∣

∣

∣
tr(AiAj)− tr(A′

iA
′
j)
∣

∣

∣
6

∣

∣

∣
tr((Ai −A′

i)Aj)
∣

∣

∣
+

∣

∣

∣
tr
(

A′
i(Aj −A′

j)
)

∣

∣

∣

6 ‖Ai −A′
i‖2 · ‖Aj‖2 + ‖Aj −A′

j‖2 · ‖A′
i‖2

6 ‖Ai −A′
i‖2 · ‖Aj‖2 + ‖Aj −A′

j‖2 ·
(

‖A′
i −Ai‖2 + ‖Ai‖2

)

6 2ε1
√
L+ ε21 = ε/2,

where the first and third inequality follow from the triangle inequality and the second
inequality is Cauchy-Schwarz. For the last inequality we have used ‖Ai‖2 =

√
Mii 6

√
L.

Replacing ε by 2ε and using Lemma 6 then establishes the first of the upper bounds. We
now continue to prove the second upper bound. For each i ∈ [n] let the eigendecomposition
of A′

i be

A′
i =

m
∑

k=1

λk,iuk,iu
t
k,i,

where m :=
⌈

ℓ2/ε21
⌉

, and consider the nm-point set of all (normalized) eigenvectors of all
A′

i:
n
⋃

i=1

{u1,i, . . . , um,i} ⊆ Rd.

By applying Theorem 11 with

ε2 := −1

3
+

1

3

√

1 +
ε

2ℓ2

we find that for

(4) r 6
(6ℓ)4 log

(

n
⌈

18Lℓ2

ε2

⌉

+ 1
)

ε2

there is a linear map Q : Rd → Rr such that

(5)
∣

∣utk,iuk′,j − utk,iQ
tQuk′,j

∣

∣ 6 ε2
(

2− utk,iuk′,j
)

6 3ε2.

for all i, j ∈ [n], k, k′ ∈ [m]. Note that for the inequality in (4) we have again used (2) with
x := ε/2ℓ2.

Set vk,i := Quk,i ∈ Rr for all i ∈ [n] and k ∈ [m]. For each i ∈ [n], define the new psd
matrix

A′′
i :=

m
∑

k=1

λk,ivk,iv
t
k,i ∈ Sr

+,
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and the new cpsd matrix M ′′ =
(

tr
(

A′′
iA

′′
j

))n

i,j=1
∈ CPSDn, whose cpsd-rank is at most

r. We finally check that M ′′ is an ε/2-approximation of M ′. For all i, j ∈ [n] we have

(6)

∣

∣

∣
tr
(

A′
iA

′
j

)

− tr
(

A′′
iA

′′
j

)

∣

∣

∣
6

m
∑

k,k′=1

λk,iλk′,j

∣

∣

∣

(

utk,iuk′,j
)2 −

(

vtk,ivk′,j
)2
∣

∣

∣

=

m
∑

k,k′=1

λk,iλk′,j

∣

∣utk,iuk′,j − vtk,ivk′,j
∣

∣

∣

∣utk,iuk′,j + vtk,ivk′,j
∣

∣

6

m
∑

k,k′=1

λk,iλk′,j

(

6ε2 + 9ε22
)

=
(

6ε2 + 9ε22
)

tr(A′
i)tr(A

′
j)

6
(

6ε2 + 9ε22
)

ℓ2 = ε/2

where the first inequality follows from the triangle inequality, the second from (5) and the
third inequality from tr(A′

i) = tr(Ai) 6 ℓ.
Altogether, the matrix N := M ′′ is an ε-approximation of M, whose cpsd-rank is small

enough to verify the second upper bound. �

Remark 13. (i) Which of the bounds in the main theorem is better depends on our setup.
For instance, if we fix ε and let n approach infinity, then the bound obtained by applying
the Johnson-Lindenstrauss Lemma is significantly smaller than the other. On the other
hand, for n fixed and ε getting smaller, the first bound will be better.

(ii) If M = (〈Ai, Aj〉)ni,j=1 is a completely positive matrix, with diagonal matrices

A1, . . . , An ∈ Sd
+, then the first approximation procedure can be used to generate a com-

pletely positive approximation. Indeed applying the Approximate Carathéodory Theorem
will return diagonal matrices A′

i. Hence, the approximation N is completely positive with

cp-rank(N) 6 n

⌈

9Lℓ2

2ε2

⌉

.

(iii) Note that the number ℓ in Theorem 12 is a kind of hidden complexity measure
of the cpsd-matrix M . What we get from M directly are the numbers tr

(

A2
i

)

= Mii,

for any Gram representation A1, . . . , An ∈ Sd
+. The numbers tr(Ai) are not uniquely

determined however, and they encode information about the eigenvalue distribution of
the psd-matrices in a Gram representation. One could upper bound them in terms of
the numbers tr

(

A2
i

)

= Mii, but this would involve a constant depending on d in general,
which we want to avoid. So one should not employ this upper bound, and understand the
approximation to really depend on the hidden complexity of M , but not on its cpsd-rank.
One instance where this works well is when M admits a Gram decomposition A1, . . . , An

with all nonzero eigenvalues of all Ai larger equal to 1. A special case is stated in the
following corollary.
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Corollary 14. Let M ∈ CPSDn with Gram representation consisting of orthogonal pro-

jections P1, . . . , Pn ∈ Sd
+. Further set L := maxiMii. Then for all 0 < ε < 1

2  L2 there exists

some N ∈ CPSDn with

cpsd-rank(N) 6 min







n

⌈

9L3

2ε2

⌉

,
(6L)4 log

(

n
⌈

18L3

ε2

⌉

+ 1
)

ε2







and

|Mij −Nij | < ε for all i, j ∈ [n].

Proof. This is immediate from Theorem 12, since for orthogonal projections we have
tr (Pi) = tr

(

P 2
i

)

= Mii, and thus L = ℓ. �

Example 15. Consider the identity matrix In ∈ CPSDn. A Gram representation is given
by the elementary matrices Ai := Eii ∈ Sn

+, and it is not hard to check that there is no
Gram representation of smaller size, i.e. cpsd-rank(In) = n. The given Ai are rank one
projections, so we have ℓ = maxi tr(Ai) = 1 = L for the given representation. The first
upper bound from Theorem 12/Corollary 14 is not meaningful here, but the second is

64 log
(

n
⌈

18
ε2

⌉

+ 1
)

ε2
,

which is smaller than n for fixed ε and large enough n. For example, for ε = 1/2 this
happens at around n = 8× 104, for ε = 1/10 at around n = 2.9 × 106.

Example 16. (i) Let M ∈ CPn be a completely positive matrix. If we assume all diagonal
entries of M to be one, this means M has a Gram representation by nonnegative unit
vectors v1, . . . , vn (of some dimension). If we further understand these nonnegative vectors
as diagonals of psd-matrices, we obtain a cpsd-decomposition of M for which the constant
ℓ from Theorem 12 is precisely the maximum over all 1-norms of the vi. The first upper
bound for the approximation thus becomes

n

⌈

9maxi ‖vi‖21
2ε2

⌉

which, depending on the vi, might be much smaller than the only known upper bound to
the cp/cpsd-rank so far, which is the actual cp-rank of M and bounded by

(

n+1
2

)

− 4 (see
[15]). Note again that the resulting approximation will again be completely positive, as
explained in Remark 13 (ii).

(ii) Let a, b, c, d ∈ Rn
+ with strictly positive entries. Further, defineC := diag(c1, . . . , cn) ∈

Sn
+ and D := diag(d1, . . . , dn) ∈ Sn

+. Then, by Proposition 2.1. in [14] the n2 × 2n matrix

V =
(

b⊗ C
∣

∣D ⊗ a
)

generates a completely positive matrix M = V tV ∈ CP2n with cp-rank(M) = n2.
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Now for q ∈ (0, 1) set c, d := (1, 1, . . . , 1)t, and a, b := (1 − q) ·
(

1, q, q2, q3, . . . , qn−1
)t
.

For the columns vi of V it holds that

‖vi‖1 = (1− q) ·
n−1
∑

k=0

qk 6 1.

Thus both ℓ and L from Theorem 12 are at most 1, and hence, by the observation in (i),
there exists a completely positive matrix N ∈ CP2n, which is an ε-approximation of M ,
and fulfills

cpsd-rank(N) 6 cp-rank(N) 6 2n

⌈

9

2ε2

⌉

.
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