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1. Introduction

The process of phosphorylation and dephosphorylation is a crucial chemical reaction network, which
plays an important role in cell signaling [3, 8, 9, 12]. We consider a protein S with n phosphorylation sites,
whose phosphorylation and dephosphorylation are respectively regulated by the enzymes kinase E and
phosphatase F . Following the notation in [1], the reaction network that governs the n-site phosphorylation
cycle is:

S0 ` E
κ1
ÝÝáâÝÝ
κ2

ES0
κ3
ÝÝÑ S1 ` E ¨ ¨ ¨ ÝÝÑ Si ` E

κ6i`1
ÝÝÝÝáâÝÝÝÝ
κ6i`2

ESi
κ6i`3
ÝÝÝÝÑ Si`1 ` E ¨ ¨ ¨

¨ ¨ ¨ ÝÝÑ Sn´1 ` E
κ6n´5
ÝÝÝÝáâÝÝÝÝ
κ6n´4

ESn´1
κ6n´3
ÝÝÝÝÑ Sn ` E

Sn ` F
κ6n´2
ÝÝÝÝáâÝÝÝÝ
κ6n´1

FSn
κ6n
ÝÝÑ S1 ` F ¨ ¨ ¨ ÝÝÑ Si`1 ` F

κ6i`4
ÝÝÝÝáâÝÝÝÝ
κ6i`5

FSi`1
κ6i`6
ÝÝÝÝÑ Si ` F ¨ ¨ ¨

¨ ¨ ¨ ÝÝÑ S1 ` F
κ4
ÝÝáâÝÝ
κ5

FS1
κ6
ÝÝÑ S0 ` F

(1)

where Si denotes the protein S after i phosphorylation steps. We denote the concentration of the
reactants in network (1) as e “ rEs, f “ rF s, si “ rSis for i “ 0, . . . , n and ui “ rFSi`1s, yi “ rESis
for i “ 0, . . . , n´ 1. Under the mass-action assumption, the ODE system governing the evolution of the
concentration of the species in time is as follows:

de
dt
“ ´

n´1
ÿ

i“0

κ6i`1sie`
n´1
ÿ

i“0

κ6i`1pκ6i`2 ` κ6i`3qyi,
df
dt
“ ´

n´1
ÿ

i“0

κ6i`4si`1f `
n´1
ÿ

i“0

pκ6i`5 ` κ6i`6qui,

dsi
dt
“ κ6i´3yi´1 ´ κ6i`1sie` κ6i`2yi ` κ6i`6ui ´ κ6i´2sif ` κ6i´1ui´1, for i “ 0, . . . , n,

dyi
dt
“ κ6i`1sie´ pκ6i`2 ` κ6i`3qyi,

dui
dt
“ κ6i`4si`1f ´ pκ6i`5 ` κ6i`6qui for i “ 0, . . . , n´ 1,

(2)

with the agreement that κj “ 0 if j ą 6n or j ă 0. Each solution trajectory is confined in the subspace
given by the conservation laws

(3) e`
n´1
ÿ

i“0

yi “ Etot, f `
n´1
ÿ

i“0

ui “ Ftot, s0 `

n
ÿ

i“1

si `
n´1
ÿ

i“0

yi `
n´1
ÿ

i“0

ui “ Stot.

where Etot, Ftot and Stot correspond to the total amounts of phosphatase, kinase and the protein S in
the system. The intersection of one such level set with the non-negative orthant is called a stoichiometric
compatibility class. The steady states of the system are found by setting the left-hand side of (2) to zero.
We refer the reader to [5] or [6] for more information on chemical reaction network theory.

Following the notation in [1], we consider the set of parameters Ki “
κ6i`1

κ6i`2`κ6i`3
and Li “

κ6i`4

κ6i`5`κ6i`6

for i “ 0, . . . , n ´ 1, which correspond to the inverses of the Michaelis-Menten constants (see e.g.[11,

Chapter 10]) of the (de)phosphorylation events, and define Ti “
śj“i
j“0

κ6j`3Kj
κ6j`6Lj

for i “ 0, . . . , n ´ 1 with

the convention T´1 “ 1. Then, the solution to the system given by the last 3n steady state equations in
the variables si`1, yi, ui for i “ 0, . . . , n´ 1 is

si`1 “ Tie
i`1f´pi`1qs0 yi “ KiTi´1e

i`1f´is0 ui “ LiTie
i`1f´is0.(4)

This gives rise to a parametrization of the set of positive steady states in the variables e, f, s0,

ϕκ : R3
ą0 Ñ R3n`3

ą0 ,(5)
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that is, the image of ϕκ is precisely the set of positive steady states. We consider the polynomial function
given by the right-hand side of (2), and by replacing its first three entries with the left-hand side of (3)
we construct the polynomial function

(6) ψκ : R3n`3 ÝÑ R3n`3,

whose image is the set if positive steady states in the compatibility class given by Etot, Ftot and Stot.
If, for a given vector of reaction rate constants κ, there exist positive Etot, Ftot, and Stot such that

some stoichoimetric compatibility class has at least two positive steady states, then we say that κ enables
multistationarity . If this is not the case, then κ is said to preclude multistationarity .

In this work, we first point out that the monostationarity of the system can be verified by checking
the nonnegativity of a particular real polynomial as given in Theorem 3.3. Furthermore, we give a
sufficient condition for multistationarity for n-site phosphorylation in Theorem 4.1. We introduce a
general construction for sufficient symbolic monostationarity conditions in Remark 4.3. Moreover, in
Theorem 4.4, we present an effective method for checking monostationarity if κ is given explicitly.

2. A Polynomial for Multistationarity

We follow the approach in [7], and reduce the problem of detecting multistationarity to the study of
the signs a multivariate rational function. We apply Theorem 1 in [4], and obtain the following result:

Proposition 2.1. Let κ P R6n
ą0, ψκ be the polynomial function defined in (6) and ϕκ the parametrization

of the set of positive steady states from (5). Define the following rational function

qκpe, f, s0q :“ p´1q3n det Jψκpϕκpe, f, s0qq.

Then it holds that:

(i) If qκpe, f, s0q ą 0 for all pe, f, s0q P R3
ą0, then κ precludes multistationarity.

(ii) If qκpe
˚, f˚, s˚0 q ă 0 for some pe˚, f˚, s˚0 q P R3

ą0, then κ enables multistationarity. In this case
the stoichiometric compatibility class containing ϕκpe

˚, f˚, s˚0 q contains at least two positive steady
states.

Based on Proposition 2.1, we study the signs qκ attains on the positive orthant to determine the set
of reaction rate constants that enable multistationarity. To this end, we first reduce the computation of
the determinant of a matrix of size 3n` 3, to the computation of the determinant of a matrix of size 3.
Let Φ be the linear map given by the left-hand side of (3).

Proposition 2.2. For any κ P R6n
ą0 and pe, f, s0q P R3

ą0, the sign of qκpe, f, s0q agrees with the sign of

det JΦ˝ϕκpe, f, s0q.

In view of Proposition 2.1 and 2.2, multistationarity is determined by considering the sign of the
determinant of the Jacobian of Φ ˝ ϕκ. Hence, Φ ˝ ϕκ depends on κ through the assembled parameters
Ki, Li, Ti, and the determinant of its Jacobian agrees with the determinant of the following matrix:

(7) J :“

»

–

1`
řn´1
i“0 pi` 1q ai x

i
2x3 ´

řn´1
i“0 i ai x

i`1
2 x3

řn´1
i“0 ai x1x

i
2

řn´1
i“0 pi` 1q bi x

i
2x3 1´

řn´1
i“0 i bi x

i`1
2 x3

řn´1
i“0 bi x1x

i
2

´1`
řn´1
i“0 pi` 1q ci x

´1
1 xi`1

2 x3 ´1´
řn´1
i“0 pi` 1q ci x

´1
1 xi`2

2 x3 1`
řn´1
i“0 ci x

i`1
2

fi

fl ,

where ai, bi, and ci corresponds to KiTi´1, LiTi, Ti for i “ 0, . . . , n´ 1 respectively, and x1 “ e, x2 “
e
f ,

and x3 “ s0. The determinant of (7) is a polynomial in x1, x2, x3 with coefficients depending on ai, bi, ci.
From Proposition 2.1 and Proposition 2.2, we see that the region of multistationarity is described by the
nonnegativity of the polynomial pηpx1, x2, x3q :“ det J .

Proposition 2.3. Let κ P R6n
ą0, consider the corresponding parameter vector η and the polynomial

pηpx1, x2, x3q :“ det J for J given in (7). Then:

(i) If pηpx1, x2, x3q ą 0 for all px1, x2, x3q P R3
ą0, then κ precludes multistationarity.

(ii) If pηpx
˚
1 , x

˚
2 , x

˚
3 q ă 0 for some px˚1 , x

˚
2 , x

˚
3 q P R3

ą0, then κ enables multistationarity, and the stoichio-
metric compatibility class containing ϕκpx

˚
1 , x

˚
1x
˚
2 , x

˚
3 q contains at least two positive steady states.
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3. Newton Polytope and Positivity

To analyze the possible signs that pηpx1, x2, x3q attains over the positive orthant, we study its Newton
polytope, which we denote by Nppηq. We note that pη is linear in x1, and hence can be expressed as

pηpx1, x2, x3q “ P0px2, x3q ` x1P1px2, x3q.

Therefore, each exponent vector in NpP0q either belong to Nppηq X tx P N3 : x1 “ 0u “ t0u ˆNpP0q or
Nppηq X tx P N3 : x1 “ 1u “ t1u ˆNpP1q.

Theorem 3.1. For any n, the set of vertices of the Newton polytope Nppηq of the polynomial pη consists
of the following 10 points:

!

p0, 0, 0q, p0, n, 0q, p0, 0, 1q, p0, 2n, 1q, p0, 2, 2q, p0, 3n´ 2, 2q, p1, 0, 0q, p1, n´ 1, 0q, p1, 1, 1q, p1, 2n´ 2, 1q
)

.

Sketch of Proof: It is sufficient to determine the vertices of NpP0q and NpP1q. P0 is quadratic in x3, and
it can be expressed as P0px2, x3q “ A2px2qx

2
3 `A10px2qx3 `A00px2q for

A2px2q “

˜

1`
n´1
ÿ

i“0

ci x
i`1
2

¸˜

2n´2
ÿ

`“1

ÿ

i`j“`

pi´ jq ai bj x
``1
2

¸

, A00px2q “ 1`
n´1
ÿ

i“0

ci x
i`1
2 ,(8)

A10px2q “
n´1
ÿ

`“0

p`` 1q a` x
`
2 ´

n´1
ÿ

`“0

` b` x
``1
2 `

2n´2
ÿ

`“0

ÿ

i`j“`

pj ` 1´ iq bi cj x
``2
2 `

2n´2
ÿ

`“1

ÿ

i`j“`

pi´ jq ai cj x
``1
2 .

The vertices of NpP0q are located along the lines Li :“ tx3 “ iu, for i “ 0, 1, 2, in the px2, x3q-plane,
and correspond to the highest and lowest exponents of the polynomials given in (8). Therefore, the set
of vertices of NpP0q is contained in S1 “

 

p0, 0q, pn, 0q, p0, 1q, p2n, 1q, p2, 2q, p3n´2, 2q
(

. To show that this
is exactly the set of vertices of NpP0q, it is enough to verify that the vertices on L1 do not lie in the
convex hull of the other four points in S1. This is easily checked by considering the relative position of
p0, 1q with respect to the line joining p0, 0q and p2, 2q and similarly, that of p2n, 1q with respect to the
line joining pn, 0q and p3n´ 2, 2q. Therefore, the Newton polytope NpP0q is the hexagon with vertex set
S1. P0 is linear in x3, and it can be expressed as P1px2, x3q “ A11px2qx3 `A01px2q for

A11px2q “ p1` x2q

˜

2n´2
ÿ

`“1

ÿ

i`j“`

pj ´ iqaj bi x
`
2

¸

, A01px2q “
n´1
ÿ

i“0

pai ` biqx
i
2(9)

Following a similar argument, we see that the vertices of NpP1q are S2 “
 

p0, 0q, pn´ 1, 0q, p1, 1q, p2n´

2, 1q
(

. Thus, we conclude that the set of vertices of Nppηq is

tp0, 0, 0q, p0, n, 0q, p0, 0, 1q, p0, 2n, 1q, p0, 2, 2q, p0, 3n´ 2, 2q, p1, 0, 0q, p1, n´ 1, 0q, p1, 1, 1q, p1, 2n´ 2, 1qu .

�

Remark 3.2. In the full article, we present the H-description of the Newton polytope Nppηq, and we
show that it has 18 edges and 10 facets.

Newton polytopes of a polynomial can be used to determine properties of a polynomial, in particular,
its positivity. In what follows, we use a well known result stating that if a polynomial P with Newton
polytope NpP q is restricted to the polynomial PF with support contained in a face F of NpP q, then any
sign which is attained by PF is also attained by P , see [7, Proposition 2.3]. In particular, if the coefficient
of the monomial supported at one of the vertices is negative, then there exists some x P Rną0 such that
the polynomial is negative at x.

Theorem 3.3. Fix η P R4n
ą0.

‚ The polynomial pη attains a negative value over R3
ą0 if and only if P0 attains negative values over

R2
ą0.

‚ η enables multistationarity if and only if pη attains negative values over R3
ą0 (equivalently P0

attains negative values over R2
ą0).

Sketch of Proof. By inspecting the coefficients of A˚px2q, we conclude that only A2, A10, and A11 have
negative coefficients. Furthermore, for a fixed x2 ą 0, we observe that A2px2q is positive if and only if

A11px2q is positive, since both A2 and A11 are positive multiples of
´

ř2n´2
`“1

ř

i`j“`pj ´ iqaj bi x
`
2

¯

. �
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By Theorem 3.3, multistationarity is completely characterized by the sign of P0 over R2
ą0. We rewrite

the polynomial as Pη, to indicate dependence on the parameter vector:

Pηpx2, x3q “ A2px2qx
2
3 `A10px2qx3 `A00px2q.(10)

This is a polynomial in two variables x2 and x3. If A2px2q ă 0, then Pη attains also negative values.

4. Region of Multistationarity and its Connectedness

We investigate the nonnegativity of the polynomial to describe subsets in the parameter region that
enable or preclude monostationarity. In order to do so, we utilize circuit polynomials, which are originally
defined in [10], to find symbolic nonnegativity conditions.

Theorem 4.1. If η is such that κ3κ12 ´ κ6κ9 ă 0 or κ6n´9κ6n ´ κ6n´3κ6n´6 ă 0, then η enables
multistationarity.

Sketch of Proof. The term that decides the sign of A2px2q is

(11)
ÿ

i`j“`

pi´ jq ai bj x
``1
2 “

ÿ

iąj
i`j“`

pi´ jqpaibj ´ ajbiqx
``1
2 .

For i, j ă n, we have aibj ´ ajbi “ Ti´1Tj´1KiKj

`κ6j`3

κ6j`6
´

κ6i`3

κ6i`6

˘

. Therefore, the signs of the coefficients

of A2px2q are decided by the signs of the minors of the following matrix:

(12) Mκ “

„

κ3 κ9 . . . κ6n´3

κ6 κ12 . . . κ6n



Note that the two expressions in Theorem 4.1 are the first and last maximal minors of matrix Mκ. �

Proposition 4.2. Let ai`1bi ´ aibi`1 ą 0 for all i P t0, . . . , n´ 1u. Then, all 2 by 2 minors of Mκ are
positive, and A2px2q is nonnegative.

For a given choice of parameters η that satisfies the conditions of Proposition 4.2, the only exponents
of Pηpx2, x3q with negative coefficients are

A´ :“ tp2, 1q, p3, 1q, . . . , p2n´ 2, 1qu .(13)

If n “ 2, then A´ consists of a single element, and Mκ has a unique 2 by 2 minor given by κ3κ12 ´

κ6κ9. If κ3κ12 ´ κ6κ9 ą 0, then the nonnegativity of Pηpx2, x3q only depends on the coefficient of
the single exponent in A´. In [7, Theorem 3.5], authors provide a symbolic sufficient condition for
monostationarity using sums of nonnegative circuit (SONC) polynomials. We further point out that
Pηpx2, x3q is nonnegative if and only if it is a SONC polynomial due to [13, Theorem 3.11] when n “ 2.
For n ą 2, one can extend the the previous approach of decomposing the polynomial Pηpx2, x3q into
circuit polynomials, and then write a nonnegativity condition for each circuit polynomial.

Remark 4.3. For n ě 2, each exponent in A´ is contained in both of the simplices given by ∆1 “

tp0, 0q, p2, 2q, p2n, 1qu and ∆2 “ tp0, 1q, pn, 0q, p3n´ 2, 2qu. One can form 2n´ 3 circuit polynomials from
each one of ∆1 and ∆2, by dividing the coefficients of each exponent in VertpNpP0qq equally into 2n´ 3
circuits. This yields two conditions for each exponent in A´, which arise from the nonnegativity condition
for circuit polynomials (see [10, Theorem 3.8]) of the polynomials that we consider for each element of
A´.

The approach given in Remark 4.3 can be improved by considering the other elements of the support
that are known to have positive coefficients. But it is not evident how to choose circuits optimally
involving these extra exponents for general n. However, if the vector of reaction rate parameters η is
fixed from the beginning, then one can give a lower bound for Pηpx2, x3q by solving a relative entropy
program. Relative entropy programs are a class of convex problems, which can be solved effectively to a
desired accuracy via interior point methods, see e.g. [2].

Theorem 4.4. For any n, given a fixed κ such that the conditions of Proposition 4.2 hold, one can find
a non-decreasing sequence of lower bounds for Pη by solving a relative entropy program at each step.

Furthermore, in the full article, we investigate the connectivity of the multistationarity region given
by X :“

 

η “ pκ3, κ6, . . . , κ6n,K0, . . . ,Kn´1, L0, . . . , Ln´1q P R4n
ą0 : η enables multistationarity

(

.

Theorem 4.5. The region X of multistationarity and the region R4n
ą0zX of monostationarity is path

connected for all n.
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