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COMPUTING MAXIMUM LIKELIHOOD ESTIMATES FOR

GAUSSIAN GRAPHICAL MODELS WITH MACAULAY2

CARLOS AMÉNDOLA, LUIS DAVID GARCÍA PUENTE, ROSER HOMS,
OLGA KUZNETSOVA, AND HARSHIT J MOTWANI

Abstract. We introduce the package GraphicalModelsMLE for computing the
maximum likelihood estimator (MLE) of a Gaussian graphical model in the
computer algebra system Macaulay2. The package allows to compute for the
class of loopless mixed graphs. Additional functionality allows to explore the
underlying algebraic structure of the model, such as its ML degree and the
ideal of score equations.

1. Introduction

The purpose of this package is to extend the functionality of Macaulay2 [6]
related to algebraic statistics, specifically allowing computations of maximum like-
lihood estimates of Gaussian graphical models. While GraphicalModels is an
existing package that already provides useful information such as conditional inde-
pendence ideals and vanishing ideals for such models, the fundamental statistical
inference task of computing maximum likelihood estimates is missing. This pack-
age aims to fill this void and also extend the functionality of GraphicalModels to
handle more general types of graphs.

The algebraic framework of Macaulay2 permits us to use both commutative
algebra and numerical algebraic geometry to obtain a guaranteed global optimal
solution by computing all critical points of the log-likelihood function. This is a
different insight from the classical statistical approach of the R package ggm [7], and
more in line with the recent numerical algebraic geometry approach from the pack-
age LinearCovarianceModels.jl in Julia [11]. The package GraphicalModelsMLE
is a great complement to these two, handling some Gaussian graphical models not
covered by them (LinearcovarianceModels.jl version 0.2 and ggm version 2.5).

Given a sample of n i.i.d. random vectors X(1), . . . , X(n) that follow an m-
dimensional multivariate Gaussian distribution N (µ,Σ), the maximum likelihood

estimate (MLE) for the covariance matrix Σ is the matrix that best explains the
observed data. More precisely, to compute the MLE one solves the optimization
problem of maximizing the log-likelihood function of the Gaussian model:

(1.1)
max

Σ∈Rm×m

ℓ(Σ) = − log detΣ− tr(SΣ−1)

subject to: Σ ≻ 0,

where S is the sample covariance matrix and Σ ≻ 0 means that Σ is a positive
definite matrix [12, Proposition 7.1.9].

In GraphicalModelsMLE we focus on computing the MLE for the covariance
matrix of Gaussian models that arise from graphical models and, in particular,
those that arise from loopless mixed graphs (LMG).
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Our algebraic approach allows to study the main algebraic features of the MLE
problem: the ideal of score equations and the ML-degree of the model, see Section
4 and Section 5 respectively.

2. Graphical models of loopless mixed graphs

A mixed graph G = (V,E) is a graph with undirected edges i − j, directed
edges i → j and bidirected edges i ↔ j. A directed cycle is a cycle on directed
edges or a cycle formed by directed edges after identifying the vertices that are
connected by undirected or bidirected edges. A loopless mixed graph (LMG) is a
mixed graph without loops or directed cycles. We allow double edges of the types
directed-undirected and directed-bidirected.

Following [13], we assume that the nodes of G are partitioned as V = U ∪W ,
such that:

• if i− j in G then i, j ∈ U
• if i↔ j in G then i, j ∈ W
• there is no directed edge i→ j in G such that i ∈ W and j ∈ U

Our definition differs from the one in [10] in that we do not allow multiple edges of
the same type, which is due to the set up of the Graphs package. We also prohibit
directed cycles, which ensures there is an ordering on the vertices such that that
all vertices in U come before vertices in W , and whenever i→ j we have i < j.

A Gaussian graphical model imposes constraints on the covariance matrix of a
Gaussian distribution. More precisely, a loopless mixed graph G = (V,E) gives rise
to the space of covariance matrices Σ ∈ RV ×V of the form

(2.1) Σ = (I − Λ)−T

[

K−1 0

0 Ψ

]

(I − Λ)−1,

where

(i) Λ = [λij ] ∈ RV ×V is such that λij = 0 whenever i→ j /∈ E
(ii) K = [kij ] ∈ RU×U is symmetric positive definite such that kij = 0 whenever

i− j /∈ E
(iii) Ψ = [ψij ] ∈ RW×W is symmetric positive definite such that ψij = 0 when-

ever i↔ j /∈ E

3. Maximum likelihood estimator

Given n i.i.d. random vectorsX(1), . . . , X(n) ∼ N (µ,Σ) and the parameter space
Θ = Rm ×Θ2 ⊆ Rm×PDm, the estimator for the covariance matrix is determined
by maximizing

(3.1) ℓ(Σ) = −
n

2
log detΣ−

n

2
tr
(

SΣ−1
)

over Σ ∈ Θ2 [12, Proposition 7.1.9]. The function solverMLE allows to compute
this optimum when Θ2 is induced by (2.1). It does so by calculating the critical
points of the log-likelihood function and selecting the points corresponding to the
maximum value in the cone of positive definite matrices. The default output is the
maximum value of ℓ(Σ), the list of maximum likelihood estimates for the covariance
matrix and the maximum likelihood degree of the model.

For undirected graphs, the MLE for the covariance matrix is known to be the
unique positive definite critical point of the likelihood. In particular, it is a positive
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definite matrix completion to the partial sample covariance matrix. See [14, Theo-
rem 2.1] or [4, Theorem 2.1.14] for more details.

Example 3.2. We compute the MLE for the covariance matrix of the graphical
model associated to the undirected 4-cycle. We take as input data the sample
covariance matrix S defined below.
i1 : loadPackage "GraphicalModelsMLE";

i2 : G=graph{{1,2},{2,3},{3,4},{4,1}};

i3 : S=matrix {{.105409, -.0745495, -.0186132, .0621907},

{-.0745495, .0783734,-.00844503,-.0872842},

{-.0186132, -.00844503, .128307, .0230245},

{.0621907, -.0872842, .0230245,.109849}};

i4 : solverMLE(G,S,SampleData=>false)

o4 = (6.62005, | .105409 -.0745495 .0124099 .0621907 |, 5)

| -.0745495 .0783734 -.00844503 -.0439427 |

| .0124099 -.00844503 .128307 .0230245 |

| .0621907 -.0439427 .0230245 .109849 |

Note that all entries in the MLE for the covariance matrix coincide with the
entries in the sample covariance matrix except for those corresponding to non-
edges of the graph. See [8, Example 12.16] for more on a positive definite matrix
completion problem associated to the 4-cycle.

For more general types of graphs, uniqueness of the positive definite critical
points is no longer guaranteed. In the mixed graph below, the optimization problem
has a global maximum but there are also local maxima, see Example 4.3.

Example 3.3. We compute the MLE for the covariance matrix of the graphical
model associated to the loopless mixed graph with undirected edge 1− 2, directed
edges 1 → 3, 2 → 4 and bidirected edge 3 ↔ 4.
i2 : G = mixedGraph(graph{{1,2}},digraph{{1,3},{2,4}},bigraph{{3,4}});

i3 : S=matrix {{34183/50000, 716539/10000000, 204869/250000, 12213/25000},

{716539/10000000, 112191/500000, 309413/1000000, 1803/4000},

{204869/250000, 309413/1000000, 3849/3125,15172/15625},

{12213/25000, 1803/4000, 15172/15625, 4487/4000}};

i4 : solverMLE(G,S,SampleData=>false)

o4 = (9.36624, {| .68366 .0716539 1.00282 .234375 |}, 5)

| .0716539 .224382 .105105 .733937 |

| 1.00282 .105105 1.76955 -.0700599 |

| .234375 .733937 -.0700599 2.97432 |

4. Ideal of score equations

The critical points of the log-likelihood function ℓ(Σ) are the solutions to the
system of equations obtained by taking partial derivatives of ℓ with respect to all
variables in the entries of Σ from our construction in (2.1):

(4.1) −
∂

∂(·)
detΣ− det Σ

∂

∂(·)
tr(SΣ-1) .

Such equations are called score equations. From an algebraic point of view, the
ideal generated by the score equations of the model is already of interest on its own,
see [12, Chapter 7].

Note that the log-likelihood function depends on the sample covariance matrix,
therefore our implementation of scoreEquations requires as input both sample
data and the graphical model encoded in a gaussianRing. See Section 6 for more
details on Gaussian rings.
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Example 4.2. We compute the ideal of score equations associated to the 4-cycle
after creating the graph G as in Example 3.2. We now consider as input data the
sample data encoded in the columns of matrix U below.

i5 : U=matrix{{3,5,9,5},{1,6,1,5},{2,9,6,6},{2,5,0,4}};

i6 : J=scoreEquations(gaussianRing G,U);

o6 : Ideal of QQ[k , k , k , k , k , k , k , k ]

1,1 2,2 3,3 4,4 1,2 1,4 2,3 3,4

i7 : dim J

o7 = 0

The ideal of score equations J is generated by 14 non-homogeneous polynomi-
als in Q[k1,1, k1,2, k1,4, k2,2, k2,3, k3,3, k3,4, k4,4]: 4 linear polynomials and 10 qua-
dratic polynomials such as 1312002k23,4 − 387081k1,2 + 109860k1,4 + 1972025k2,3 −
898518k3,4 − 291556.

Example 4.3. We want to obtain all local maxima of the log-likelihood function
associated to the graphical model in Example 3.3. The score equations generate
an ideal in Q[k1,1, k2,2, k1,2, l1,3, l2,4, p3,3, p4,4, p3,4] and we display their solutions in
the Macaulay2 session below. We retrieve the covariance matrix Σ with rational
entries in variables k1,1, k2,2, k1,2, l1,3, l2,4, p3,3, p4,4, p3,4 using the optional output
CovarianceMatrix in scoreEquations.

i5 : R = gaussianRing G;

i6 : (J,Sigma)=scoreEquations(R,S,SampleData=>false,CovarianceMatrix=>true);

i7 : dim J, degree J

o7 = (0, 5)

i8 : sols=zeroDimSolve(J);netList sols

+--------------------------------------------------------------------------+

o8 = |{1.51337, 4.61101, -.483277, 1.46684, 3.27093, .298576, .573665, -.41385} |

+--------------------------------------------------------------------------+

|{1.51337, 4.61101, -.483277, 1.39884+.440525*ii, 2.45466-.923165*ii, |

|.144129+.120574*ii,.0696297-.184692*ii,-.19668+.0553853*ii} |

+--------------------------------------------------------------------------+

|{1.51337, 4.61101, -.483277, 1.39884-.440525*ii, 2.45466+.923165*ii, |

|.144129-.120574*ii, .0696297+.184692*ii, -.19668-.0553853*ii} |

+--------------------------------------------------------------------------+

|{1.51337, 4.61101, -.483277, .684147, .979681, .430388, .453924, .381688} |

+--------------------------------------------------------------------------+

|{1.51337, 4.61101, -.483277, .988484, 1.64649, .279607, .245722, .0952865}|

+--------------------------------------------------------------------------+

How many of the 3 real critical points correspond to positive definite matrices
that are local maxima of the log-likelihood function? We first check that they
correspond to positive definite matrices by substituting the three real solutions in
the covariance matrix Σ.

i9 : checkPD(apply(sols,i->sub(Sigma,matrix{coordinates(i)})))

| .68366 .0716539 1.00282 .234375 |, | .68366 .0716539 .467724 .070198 |,

| .0716539 .224382 .105105 .733937 | | .0716539 .224382 .0490218 .219823 |

| 1.00282 .105105 1.76955 -.0700599 | | .467724 .0490218 .75038 .429714 |

| .234375 .733937 -.0700599 2.97432 | | .070198 .219823 .429714 .66928 |

| .68366 .0716539 .675787 .117978 |

| .0716539 .224382 .0708287 .369443 |

| .675787 .0708287 .947611 .211905 |

| .117978 .369443 .211905 .854009 |
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The MLE for the covariance obtained in Example 3.3 corresponds to the first pos-
itive definite matrix in the list above. The eigenvalues of the Hessian matrix com-
puted below tell us which kind of critical point we have for each of the 3 real
solutions.

-- compute Jacobian matrix (i.e. score equations)

i10 : scoreEq=-1/det Sigma*jacobianMatrixOfRationalFunction(det Sigma)-

jacobianMatrixOfRationalFunction(trace(S*(inverse Sigma)));

-- compute Hessian matrix

i11 : Hessian=matrix for f in flatten entries scoreEq list

flatten entries jacobianMatrixOfRationalFunction(f);

-- compute eigenvalues of the Hessian matrix evaluated at real points in sols

i12 : apply({sols_0,sols_3,sols_4},i->eigenvalues sub(Hessian,matrix{coordinates(i)}))

{{-.516478 }, {-.516478 }, {-.516478 }}

{-.271913 } {-.271913 } {-.271913 }

{-.0464172 } {-.0464172} {-.0464172}

{-9869730000} {-414.15 } {-59.7135 }

{-128887 } {-28.6352 } {1.52598 }

{-58261.1 } {-6.1936 } {-2.80504 }

{-773.513 } {-1.64689 } {-11.5533 }

There are two local maxima and a saddle point. This shows that the log-likelihood
function of this model is not a concave function, see [3].

Example 4.4. Next we compute the ideal of score equations associated to a mixed
graph that has a multi-edge: directed edges 1 → 3, 1 → 2, 2 → 4, 3 → 4 and
undirected edge 1− 2.

i2 : G = mixedGraph(digraph{{1,3},{1,2},{2,4},{3,4}},graph{{1,2}});

i3 : R = gaussianRing G;

i4 : U = random(RR^4,RR^4);

i5 : J=scoreEquations(R,U);

i6 : dim J

o6 = 1

Note that in this case the ideal of score equations is no longer zero-dimensional.

5. Maximum likelihood degree

The maximum likelihood degree (ML-degree) of a model is defined as the number
of complex solutions of the score equations for generic sample data, see [12, Defini-
tion 7.1.4]. For a more algebraic flavour of the notion of ML-degree, see [9, Defini-
tion 5.4].

Note that the ML-degree is only well-defined when the ideal of score equations
is zero dimensional. A typical way where this fails is where the model becomes non-
idenfiable. See e.g. [1] for some sufficient conditions to avoid non-identifiability and
preservation of dimension of the model in terms of the number of parameters.

It is important to observe that for generic data the solutions to score equations
are all distinct, see [2, Remark 2.1, Lemma 2.2]. Computing the algebraic degree
of the zero-dimensional score equations ideal via the degree function in M2 is
equivalent to computing the number of complex solutions - without multiplicity -
to the score equations.

In our implementation of the MLdegree function in Macaulay2 a random sample
matrix is used as sample data. Therefore, the ML-degree of the graphical model
we provide is correct with probability 1.
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Example 5.1. The ML-degree of the 4-cycle can be directly computed as follows:

i2 : G=graph{{1,2},{2,3},{3,4},{4,1}};

i3 : MLdegree(gaussianRing G)

o3 = 5

In the case of ideals of score equations with positive dimension, MLdegree will
still compute the degree of the ideal but this no longer matches the number of
solutions to the score equations.

Example 5.2. Continuing with Example 4.4, where the ideal of score equations is
1-dimensional, MLdegree does not provide a meaningful answer.

i2: G=mixedGraph(digraph{{1,3},{1,2},{2,4},{3,4}},graph{{1,2}});

i3: MLdegree(gaussianRing G)

error: the ideal of score equations has dimension 1 > 0,

so ML degree is not well-defined. The degree of this ideal is 2.

6. Updates in related packages

GraphicalModelsMLE relies on the new package StatGraphs 0.1 and the updated
packages Graphs 0.3.3 and GraphicalModels 2.0 (see [5] for version 1.0).

We created a dedicated package StatGraphs for graph theoretic functions relevant
to algebraic statistics. It contains the functions isCyclic, isSimple, isLoopless
and partitionLMG to deal with loopless mixed graph. The package Graphs keeps
graph-related functionality of general use.

The function partitionLMG computes the partition V = U ∪W of vertices of a
loopless mixed graph described in Section 2. Vertices in the input graph need to be
ordered such that (1) all vertices in U come before vertices in W and (2) if there is
a directed edge i→ j, then i < j.

Example 6.1. The vertices of the loopless mixed graph in Example 3.3 are parti-
tioned into U = {1, 2} and W = {3, 4}.
i1 : loadPackage "StatGraphs";

i2 : G = mixedGraph(digraph {{1,3},{2,4}},bigraph{{3,4}},graph{{1,2}});

i3 : partitionLMG G

o3 = ({1, 2}, {3, 4})

o3 : Sequence

The central object in the implementation of our MLE algorithm is gaussianRing
from the package GraphicalModels.

Example 6.2. We compute the gaussianRing associated to the graph in Example
6.1 and display the variables of the ring as entries of matrices:

i4 : loadPackage "GraphicalModels";

i5 : R=gaussianRing G;

i6 : undirectedEdgesMatrix R

o6 = | k_(1,1) k_(1,2) |

| k_(1,2) k_(2,2) |

i7 : directedEdgesMatrix R

o7 = | 0 0 l_(1,3) 0 |

| 0 0 0 l_(2,4) |

| 0 0 0 0 |

| 0 0 0 0 |

i8 : bidirectedEdgesMatrix R

o8 = | p_(3,3) p_(3,4) |

| p_(3,4) p_(4,4) |

i9 : covarianceMatrix R

o9 = | s_(1,1) s_(1,2) s_(1,3) s_(1,4) |

| s_(1,2) s_(2,2) s_(2,3) s_(2,4) |

| s_(1,3) s_(2,3) s_(3,3) s_(3,4) |

| s_(1,4) s_(2,4) s_(3,4) s_(4,4) |
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In version 2.0 of GraphicalModels, we updated the functionalities of the method
gaussianRing – and its related methods – in order to accept loopless mixed graphs
with undirected, directed and bidirected edges.

Note that mixed graphs that include undirected edges are required to have an
ordering compatible with partitionLMG. For mixed graphs with only directed and
bidirected edges this is no longer necessary, as in version 1.0 of GraphicalModels.
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