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Identifiability

Quick introduction

Understand if a given tensor
TecCntl®...®C"*! admit a unique decomposition as a sum
of pure tensors

,
T:ZVL/'@'”@V/(J (\/J",'E(Cnf—i_l,j:l,...,k).
i=1

Phylogenetic (Allman, Rhodes, Sullivant...)
S. Processing (Jiang, Sidiropoulos...)

Generic (Ciliberto, Chiantini, Galuppi, Hauenstein, Mella, Oeding,
Ottaviani, Sommese...)

Specific [Kruskal'70], [De Lathauwer-Domanov'13],
[Chiantini-Ottaviani-Vannieuwenhoven'17], [Lovitz-Petrov'21].



Overview

@ Notation

@® Concise Segre and identifiability of rank-2 tensors

© Identifiability of rank-3 tensors



Tensors in the projective space

We work over C.

® Let Vi,..., Vi be vectors spaces, dim(V;) = n; + 1.
The Segre variety is the image of

viP(V) x - xP(Ve) = P(VL®---® V) =PV

([Vl],...,[Vk])H [V1®"‘®Vk]-
® Y=P"x...xP%and X :=v(Y)CPN
e The rank of a tensor g € PV is

r(q) :=min{reN| g€ (p1,...,pr), pi € X}.



Secant varieties

Fix r > 0. The r-th secant variety o,(X) of X C PV is

oX):= U (pr..opr).

P1s--sPreX



|dentifiability of Tensors

e Atensor g € PN of rank r > 0 is if there exists a
unique r-uple of points p1,...,p, € X such that
qge(pL,..-.Pr).

® For any g € PN, we define the of g as

S(Y,q) :={AC Y |#(A) =r(q) and q € (v(A))}.

® If q is identifiable then #S(Y,q) = 1.
* If Ae S(Y,q), then A the rank of g.



Concision/Autarky

Lemma

L Forany g e P(V1 ® --- ® Vi), there is a unique minimal
multiprojective space Y' ~P™M x --- x Pk C Y ~ P™M x ... x P
with n; < nj, i =1,..., k such that S(Y,q) = S(Y’, q).

Definition (concise Segre)

Given a point g € PV, we will call the variety

Xq :=v(Y') where Y/ C Y is the minimal multiprojective space
Y" C Y such that g € (¢(Y’)) as in Concision/Autarky Lemma.

le.g. J. M. Landsberg. Tensors: Geometry and Applications. Graduate
Studies in Mathematics. Amer. Math. Soc. Providence, 128 (2012).



Building the concise Segre...

® et m;: Y — P" be the of Y.
The minimal Y’ defining the concise Segre of a point g can be
obtained as follows.

e Fixany A€ S(Y,q), set A; := m;i(A) C P, for all

i=1,... k.
e Each (A;) C P" is a well-defined projective subspace of
dimension at most min{n;, r(q) — 1}.

e By Concision/Autarky we have Y’ = [T, (A)).

e If for one A € S(Y, q) the set 7;(A) is a single point then the

i-th factor won't appear in the concise Segre.



Rank-2 tensors

With rank-2 tensors we reduce to work with Y = (P1)X thanks to
Concision/Autarky. For the general case everything was already
known.

® Matrix case and 3-factor case are classical.

® k>4 2

Proposition

Let g € 09(X). Then |S(Y,q)| > 1 if and only if the concise Segre
Xq of q is Xq = v(P! x P1).

2C. Bocci, L. Chiantini and G. Ottaviani. Refined methods for the
identifiability of tensors. Annali di Matematica Pura ed Applicata. 193 (2013).



Rank-3 tensors

Let g € PN be a rank-3 tensor.
®* Fix Ae S(Y,q), where Y =P™ x ... x P,
® Note that forall i=1,...,k

0 = we get rid of the j-th factor

dim(m;i(A)) =<1 = the i-th factor becomes P!
2 = the i-th factor becomes P?

Therefore we reduce to work with multiprojective spaces given by
products of projective lines and planes.



Examples 1 and 2

Let Y =P? x P! x P1. Consider the Segre embedding on the last
two factors and take a hyperplane section which intersects
v(P* x P1) in a conic C.

P! x P! AN

Take a point g € (v(P? x C)). We distinguish two different cases
depending on whether C is irreducible or not.



Example 1
Irreducible C

The previous construction is equivalent to consider an irreducible
divisor G € |Oy(0,1,1)].

® G = P2 x P! embedded via O(1,2).

® Therefore dim o2(v(G)) = 7 and thus

a2(v(G)) € (1(G)) ~ P°.

As a direct consequence we get that a general point g € (v(G))
has v(G)-rank 3 and it is not-identifiable because of the
non-identifiability of the points on (C).
Moreover we proved that S(Y,q) = S(G, q).



Example 2
Reducible C

Let Y = P2 x P! x PL. Take G = G; U G, a reducible element of
|Oy(0,1,1)|, where

* G; €|0y(0,0,1)|, i.e. Gy =2 P?x P! x {pt},

° G € |Oy(0,1,0)|, ie. G = P? x {pt} x P1.
We proved that

((G)) = Join(o2((G1)), ¥(G2)) = Join(o2(1(G2)), v(Gr)).

A general g € (v(G)) = Join(o2(v(G1)), v(Gz)) has rank 3 and for
the subsets evincing its rank we have a 4-dimensional family of sets
Asuch that §(A) =3, #AN G =2, #AN Gy =1

AN Gy N Gy =0 (analogously, by looking at q as an element of
Join(o2(v(G2)), v(G1)) ).

Also in this case S(Y,q) = S(G, q).



Example 3
Take Y/ := P! x P x {ug} x -+ x {ug} C Y =P™ x - x P,
k>2,n,nn<2 n=---=n,=1.
Take ¢ € (W(Y'N\v(Y'), AeS(Y',¢d)and pe Y\ Y
Assume that Y is the minimal multiprojective space containing
AU {p} and take g € ({d’,v(p)}) \ {d',v(p)}-

e |[f k>3 and Zf'(:l n; > 4 then
rl/(Y)(q) =3 and
S(Y,q) = {{p} UA}aes(v',q)-




Rank-3 tensors
Main theorem
Let Y =P™ x ... x P" be the multiprojective space of the
concise Segre of a rank-3 tensor g. The rank-3 tensor g is
identifiable except in the following cases:

@ g is a rank-3 matrix, in this case dim(S(Y, q)) = 6;

® g belongs to a tangent space of the Segre embedding of
Y =P x P! x P!, in this case dim(S(Y,q)) > 2;

© q is an order-4 tensor of a3(Y) with Y = P! x P! x P! x P!,
in this case dim(S(Y,q)) > 1. 3

M.V. Catalisano, A.V. Geramita, A. Gimigliano. Ranks of tensors, secant varieties of Segre varieties and fat

points. Linear Algebra Appl. 355 (2002).



Rank-3 tensors
Main theorem
Let Y =P™ x ... x P" be the multiprojective space of the
concise Segre of a rank-3 tensor g. The rank-3 tensor g is
identifiable except in the following cases:

® g is a rank-3 matrix, in this case dim(S(Y, q)) = 6;

® g belongs to a tangent space of the Segre embedding of
Y = P! x P! x P!, in this case dim(S(Y, q)) > 2;

© g is an order-4 tensor of o9(Y) with Y =P x P! x P! x P!,
in this case dim(S(Y,q)) > 1.

® g is as in Example 1 where Y =P? x P! x P!, in this case
dim(S(Y,q)) =3;

@ g is as in Example 2 where Y = P? x P! x P!, in this case
S(Y, q) contains two different 4-dimensional families;

@ q is as in Example 3. In this case dim(S(Y, q)) > 2 and if
n + ny + k > 6 then dim(S(Y,q)) = 2.



Outline of the proof
Let Y =P™ x --. x P™, where all n; € {1,2}. Let g € PV,
assume A, B € §(Y,q) and call S :== AU B.

We proved that #AN B < 1.

Main Tool
i =(0,...,0,1,0,...,0) and &; = (1,...,1,0,1,...,1).

Lemma (BBCG?)

Let k > 2 and consider Y = P™ x ... x P, where all n; > 1.
Let g PN, A, B € S(Y,q) be two different subsets evincing the
rank of g and write S = AU B. Let D € |Oy(e)| be an effective
Cartier divisor such that AN B C D, where e = Zl-e, g; for some
I c{1,... k}. lfhl(Is\SmD(é)) =0thenS C D.

°E. Ballico, A. Bernardi, M. Christandl and F. Gesmundo. On the partially
symmetric rank of tensor product of W-states and other symmetric tensors.
Rend. Lincei Math. Appl. 30, 93-124 (2019).



Thank you!
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