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Combinatorial Differential Algebra of x”

> at the interface of geometric combinatorics and differential algebra

Linking. ..
differential ideals
lattice polytopes arising from graphs
regular triangulations
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Differential algebra

» study of polynomial O/PDEs with methods from Commutative Algebra

Differential rings and ideals

» C[x(>)] the ring of differential polynomials in x over C, i.e.,
(Clx,xM, x@ . ],9), 0(xW)) = x(k+1) 9|c =0, Leibniz' rule

» | aC[x(*)] is a differential ideal if O(/) C /

> For S C C[x(>)], (§)> denotes the differential ideal generated by S.

Bivariate case
(C[X(Oo’oo)] = (C[{X(k’z)}a {85, at}] with
By(x kD) = X109 (x(kO)) = (kD) 91 =0, d,|c =0

the ring of partial differential polynomials in x over C in the two independent
variables s and t.
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Differential Grobner bases

Definition

G C C[x(*)] is a differential Grobner basis of (G)(*) if

{0K(g) | k €N, g € G} is an algebraic Grébner basis of (G)(>) w.r.t. <.
Theorem (Zobnin, 2009)

The singleton {xP} is a differential Grobner basis of (xP)(°°) with respect to the
reverse lexicographical ordering.
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Jets of the fat point xP on the affine line

R, the polynomial ring Clxo, . . ., x,]
fo,n € Ro[t]  the polynomial (xo + xit + - -+ + x,t")P in t
Con< Ry the ideal generated by the coefficients of £, ,
Ip.n AC[x(>®)]  the differential ideal generated by xP and x("

Truncating Taylor series

Cp,n encodes certain n-jets of the fat point xP on the affine line

Linking C, , and 1, ,

o oo 1
Ro/Cpn — CIXON /1y ni1, x> Ex(k).

Question
For fixed n, is dim¢(Rn/Cp,n) a polynomial in p of degree n+ 17
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Example: dim¢(Rs/ Cp6)pen

The first 13 entries of the sequence dim¢(Rs/Cp6)pen are’
0,1,34,353,2037,8272,26585, 72302, 173502, 377739, 760804, 1437799, 2576795,

coinciding with the sequence https://oeis.org/A244881.

Interpolating polynomial (computed on the values for p=1,...,20):

27 1_764_2 5+B 4+E 3_|_1_7 2+i
3157 T 90P T 180P T 727 T a0P T 360P T 1407

of degree 7 =6+ 1.

lcomputed with Singular
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https://oeis.org/A244881

Counting lattice points of polytopes

C  an integral d-dimensional polytope
tC the polytope dilated by t € N

Then: [tCNZ"| is a polynomial in t of degree d, the Ehrhart polynomial of C.

Theorem (Ait El Manssour-S., 2021)
The number dimc(R,/Cp.») is the Ehrhart polynomial of the polytope

Pp = {(wo....,wn) € Rx0)"wi + wip1 < Lforall0<i<n—1}
evaluated at p — 1.
Proof: Results from graph theory +
Proposition (Bruschek—-Mourtada—Schepers, 2013)
iN<,oe (Co,n) is generated by {x/"x/1} | ui +ujz1 =p,0<i<n—1}.

» graph G with V ={0,1,...,n} and E = {[i,i 4+ 1]}i=0,...n—1
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Fractional stable set polytope of a graph

G an undirected graph with vertices V and edges E
C(G) the cliques of G
Two polytopes

> Stab(G) = conv{x® € RY | S C V stable} the stable set polytope of G,
with x° = (x3)vev € RY incidence vectors

> QStab(G) == {x e RV [0 < x(v)Vv eV, 3 ox(v) <1VQ e C(G)}
the fractional stable set polytope of G

Then: Stab(G) = conv{{0,1}" N QStab(G)}.

Theorem (Chvatal, 1975)
A graph G is perfect iff Stab(G) = QStab(G)
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Bivariate case

R n the polynomial ring C[{xk ¢ }o<k<m o<e<n]
fo.(m,n) € Rmnls,t]  the polynomial (xo0 + X105 + - - + Xmas™t")P in s and ¢
Co,(m,n) < Rm,n the ideal generated by the coefficients of f, (1, »)

Ip (mny AC[x(>>)] " the differential ideal generated by x?, x(™ 0) and x(©n)

Linking Cp (m.n and Il (m.n)

o 1
Rnn/ Co.(mmy — Clx /I, Am+1,n+1), Xk 7 WX(M)'

Looking for monomial orderings. . .

.. for which the coefficients of f, (,, ,) are a Grobner basis of C,, (. n)-
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The regular triangulation T,

Tmy2 the placing triangulation of the m x 2-rectangle for the point configuration
[(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),...,(m,0),(m,1),(m,2)] induced

by the vector (1,2, ...,23m%2) (lower hull convention)
(0,2) (1,2) (2,2) (3,2) e (m,2)

(0,1) (m,1)
(0,0) (1,0) (2,0) (3,0) S (m,0)

Figure: The regular triangulation T
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The regular triangulation T, ,

Tm,n the placing triangulation of the m X n-rectangle for the point configuration

[(0,0),(0,1),...,(0,n),(1,0),...,(1,n),...,(m,0),...,(m,n)]

(0, n) (1,n)
q ]
(0,2)¢ »(1,2)
(0,1)¢ p(1,1)
(0,0) (1,0)

Figure: The regular triangulation Ti,
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T  a triangulation of the m x n-rectangle

Definition
A monomial ordering < on C[{x(=5<O}q\ < 6<p<,] is called T-ordering if each

of the leading monomials of (x”)(’“e) is supported on a triangle of T.

Proposition (Ait EI Manssour-S., 2021)

For all k, ¢, (xP)(8) € C[x(S™=M] has a unique monomial supported on a
triangle of T, 5. The reverse lexicographical ordering < on C[x(=m=n] is a
T m,n-ordering for all p.
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A higher-dimensional analog of Zobnin's result

< a Tpyp-ordering

Theorem (Ait El Manssour-S., 2021)

For all m, p € N, {(xP)*9} o< k< mp, 0<r<2p is a Grébner basis of (x?)(>:>) in
C[x(=m=2)] with respect to any T, »-ordering.

Theorem (Ait El Manssour-S., 2021)

For all m € N, dim¢(Rm,2/Cp (m,2)) is the Ehrhart polynomial of the
3(m + 1)-dimensional Iattlce polytope

P(m,2) = {(uoo, uo1, toz, - . ., Umo, Um1, Um2) € (R20)3(m+1)|uk1,l1 + Uiy 0y + Ukges < 1
for all indices s.t. {(k1,¢1), (k2,£2), (ks,€3)} is a triangle of Tp}

evaluated at p — 1.
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Example: C3 29

Cp.2,2) theideal in Ry = Clxoo, X10, X01, X02, X11, X12, X20, X21, X22] generated
by the (2p + 1)® many coefficients of £, (55 € Ra2[s, t]
= the weighted reverse lexicographical ordering on R, for
wap = (28 +1,...,284+1) - (2°,21,...28) e N?

In the leading monomials of the coefficients of 3 (3 2, the following triples of
variables show up:

{x00, %01, X10}, {01, X02, X10}, {X02, X10, X11 }, { X02, X11, X12} 5

{Xlo, X11, XZO}a {X117 X12, X20}; {X127 X20, X21}7 {X127 X21, X22}-

The indices of those define the triangles of the regular triangulation T »:

(0,2) (1,2) (2,2)
(0,1) (2,1)

(0,0) (1,0) (2,0)
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Figure: For height vectors inducing those four regular unimodular triangulations of the
3 x 2-rectangle, the weighted reverse lexicographical ordering turns the coefficients of
f5,3,2) into a Grébner basis of C, (32).
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Open problems

Question 1

For which m, n, p € N does there exist a regular unimodular triangulation T of the
m x n-rectangle such that the coefficients of f, (,, ,) are a Grobner basis of
Cp,(m,n) With respect to the weighted reverse lexicographical ordering for a vector
inducing that triangulation in the upper hull convention?

Question 2

Are the four triangulations depicted on slide 15, continued to the m x 2-rectangle,
all regular unimodular triangulations that give rise to a Grobner basis?

Question 3

As p varies, is dimc(Rm,n/ Cp (m,n)) the Ehrhart polynomial of the (fractional)
stable set polytope of the edge graph of T and is this graph perfect?

Inc(N)-stable ideals [KLS16, HS09, NR17]
Parallels to be worked out
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Supplementary material

A*“geometrical provocation” inspired by T ».
Find more of them on www.alsattelberger.de!
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https://www.alsattelberger.de/painting

Thank you very much for your attention!
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