
Degroebnerization and its
applications:

a new approach for data
modelling.

Michela Ceria
(joint work with T.Mora and A.Visconti)

Polytechnic of Bari

MEGA2021, June 2021

What we want to do?

We study a new Computer Algebra-based approach to give a
polynomial model for data.

Specific problem
Reverse engineering for gene regulatory networks.

We want to �nd: polynomials in normal form with respect to
the vanishing ideal of some given data points.
We achieve:
• no Gröbner bases Buchberger reduction: only linear
algebra and combinatorics;
• complexity improvement.

Let’s start! Reference for the problem

Previous paper
Laubenbacher, R., Stigler, B., A computational algebra
approach to the reverse engineering of gene regulatory
networks, Journal of theoretical biology, 229, 4, 523-537,
Academic Press.

We will improve the method proposed in this paper.

Reverse engineering: the previous approach

Study of the DNA of mosquitos, by means of Computer
Algebra.

Quoting Lauenbacher and Stigler
The authors adopt the modeling framework of time-discrete
multi-state dynamical systems.

The proposed model

The system is composed by states (that are our points) whose
nodes (the variables) represent the genes.

The states of each node, so the values each variable can take
are the elements in Zp, with p prime.

The dynamical system is represented by the function

F : (Zp)n → (Zp)n,

sending each point to the next one, so representing the
transitions among the states.

The values of the prime p indicate how that state changes at
each transition; for instance for p = 3, −1 means decreases, 0
means stability and +1 means increases.

More precisely, if X = {P1, ...,PN} ⊆ (Zp)n are our points, it
holds F(Pi) = Pi+1, for i = 1, ...,N− 1.

We can describe F via the coordinate functions

fj : (Zp)n → Zp, 1 ≤ j ≤ n

so that F(Pi) = (f1(Pi), ..., fn(Pi)), for i = 1, ...,N− 1.

They see these functions as polynomial functions

fi ∈ Zp[x1, ..., xn].

How to solve the problem according to
Lauenbacher and Stigler

They compute separately the functions fj, 1 ≤ j ≤ n, from
which they reconstruct F.

In particular, the polynomials they want to �nd should be in
normal form, namely in reduced form modulo the ideal I(X).

Normal form
Let I be an ideal of P := k[x1, ..., xn].
If f ∈ P is a polynomial, we call normal form of f with respect
to I the unique polynomial

Nf(f) :=
∑
t∈A

ctt,

such that A is a basis of P/I as k-vector space and f −Nf(f) ∈ I.

The algorithm

The proposed algorithm is composed of three steps:

• compute a particular solution for fj, 1 ≤ j ≤ n;

• compute a Gröbner basis G of I(X), via Buchberger-Möller
algorithm, which interpolates on X;

• perform Buchberger reduction on the particular
solutions, modulo G.

Focus on the particular solution: separator
polynomials

Let us consider a �nite set of simple points
X := {P1, ...,PN} ⊂ kn. A family of separator polynomials for X
is a set Q := {Q1, ..,QN} ⊂ P , such that, for i, j ∈ {1, ...,N},
Qi(Pj) = 1 if i = j and Qi(Pj) = 0 otherwise.

Denote Pi = (a1i, ...,ani), 1 ≤ i ≤ N; we can de�ne, for
1 ≤ i, j ≤ N,

ci,j :=
{

0, if i = j
min{h : 1 ≤ h ≤ n, ahi 6= ahj} otherwise

The building factors for separator polynomials are

p[ci,j]i,j =
xci,j − aci,j,j
aci,j,i − aci,j,j

The particular solution is de�ned as

N−1∑
i=1

aj,i+1ri(x1, ..., xn),

where ri(x1, ..., xn) =
∏N−1
k=1 p

[ci,k]
ik .

The polynomials ri form a separator family for our points.

As they say...

In summary, the complexity of the algorithm is

O(n2N2)+O((N3+N)(log(p))2+N2n2)+O(n(N−1))2cN+N−1).

It is quadratic in the number n of variables and expo-

nential in the number N of time points.

The turning point: Degroebnerization!

Why you should not even think...
Groebner bases are not e�cient to be computed, therefore
Degroebnerization is aimed to limit only to the very
necessary cases the use of Groebner bases, �nding
alternative solutions every time it is possible.

The alternative tools come from linear algebra and
combinatorics.

Lundvist’s formula

Let X = {P1, ...,PN} be a �nite set of simple points,
I := I(X) / k[x1, ..., xn] the ideal of points and
N = {t1, ..., tN} ⊂ k[x1, ..., xn] such that [N] = {[t1], ..., [tN]} is a
basis for A := k[x1, ..., xn]/I. Then, for each f ∈ k[x1, ..., xn] we
have

Nf(f ,N) = (t1, ..., tN)(N[X]−1)t(f (P1), ..., f (PN))t,

where N[X] is the matrix whose rows are the evaluations of N
at the elements of X and Nf(f ,N) is the normal form of f w.r.t.
I(X).

On Lundvist’s formula

As soon as we have X and a basis of the quotient algebra
P/I(X), computing the normal form of a polynomial modulo
I(X) is only a matter of evaluations and linear algebra.

In principle, we would need...

• the particular solutions, i.e. the polynomials of which we
have to compute the normal form;
• the set of points X;
• a basis of the quotient algebra P/I(X).

But we can even do better!

Reminder
To apply Lundvist’s formula we need only the evaluation of
the polynomial whose normal form is needed.

Reminder 2
The particular solutions are the fi’s for i = 1, ...,N− 1; they
describe the system since we have F(Pi) = (f1(Pi), ..., fn(Pi)),
for i = 1, ...,N− 1. Moreover, we know that F(Pi) = Pi+1, for
i = 1, ...,N− 1.

But we can even do better!

Since only the evaluation is needed and we know that
F(Pi) = Pi+1, for i = 1, ...,N− 1, we can completely avoid the
computation of the particular solution!

Therefore...
...given X we only have to
• compute a basis of the quotient algebra P/I(X).
• apply Lundvist’s formula.

A basis of the quotient algebra P/I(X)

Given any ideal I of P , we can de�ne the set
T{I} := {T(g), g ∈ I} and the semigroup ideal of leading terms
T(I) := {tT(g)| t ∈ T ,g ∈ I}.
N(I) := T \ T(I) is called Gröbner escalier of the ideal I.

If one has a Gröbner basis for I(X) with respect to some term
ordering, �nding a basis for P/I(X) is trivial, since one such a
basis is the Gröbner escalier of I(X).
But computing a Gröbner basis is not easy at all, therefore we
want to avoid it.

A basis of the quotient algebra P/I(X)

There are some algorithms that employ only combinatorics on
the given points in X to compute the Gröbner escalier, with no
polynomials involved.

• Cerlienco-Mureddu: O(n2N2)
• Lex Game: O(nN+ Nmin(N,nr))
• Iterative Lex Game: O(N2n log(N))

N points, n variables, r max. number of points with the �rst
coordinates in common

The point trie

It is a trie representing the reciprocal relations among the
coordinates of points.

same path from level 0 to level i = same 1, ..., i �rst
coordinates

It is constructed iteratively on the points.

Example

X := {P1 = (0,0),P2 = (1,0),P3 = (0, 1),P4 = (1, 1)}
{1}

{1}

{1}

→
0

0

{1, 2}

{1}

{1}

{2}

{2}

→
0

0

1

0

{1, 2, 3, 4}

{1, 3}

{1} {3}

{2}

{2}

0

0 1

1

0

{1, 2, 3, 4}

{1, 3}

{1} {3}

{2, 4}

{2} {4}

0

0 1

1

0 1

Bar Codes

Definition
A Bar Code B is a picture composed by segments, called bars,
superimposed in horizontal rows, which satis�es
a. ∀i, j, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ µ(i), ∃!j ∈ {1, ..., µ(i+ 1)} s.t.

B(i+1)
j

lies under B(i)j

b. ∀i1, i2 ∈ {1, ...,n},
∑µ(i1)

j1=1 l1(B
(i1)
j1) =

∑µ(i2)
j2=1 l1(B

(i2)
j2); we will

then say that all the rows have the same length.

0

3

2

1
1 x1 x2 x3

Associating monomials to bars

For t = xγ11 · · · x
γn
n ∈ T , ∀i ∈ {1, ...,n}, πi(t) := xγii · · · x

γn
n ;

M = {t1, ..., tm} ⊂ T , M[i] := πi(M), M, M[i] increasingly ordered
w.r.t. Lex.

M :=

π1(t1) ... π1(tm)
π2(t1) ... π2(tm)
...

...
πn(t1) ... πn(tm)

Bar Code: connecting with a bar the repeated terms

0

3

2

1

1 1 1 x3
1 1 x2 x3

1 x1 x2 x3

Our algorithm

Base step
|X| = N = 1: set N(1) = {1} and construct the point trie
T(P1) = T(X) and the Bar Code B(1) displayed below. The
output is stored in the matrix M.

{1}

{1}

{1}
...
{1}

a11

a21

an−1 1

an 1

1

...

x1

xn

M =

 xn xn−1 ... x1
↓ ↓ ... ↓

1→ 0 0 ... 0

Our algorithm: |X| = N > 1

• update the point trie: forking level s = σ-value; leftmost
label of the rightmost sibling l = σ-antecedent;
• �nd the s−bar of tl: B

(s)
j

Information on tN:
• it lies over B(n)1 ,B(n−1)1 , ...,B(s+1)1 so tN lies over the �rst
n, ..., s+ 1 bars, i.e. a(N)s+1 = ... = a(N)n = 0, so xn, ..., xs+1 - tN;
• it should lie over B(s)j+1: a

(N)
s = a(l)s + 1.

Our algorithm: |X| = N > 1

We test whether B(s)j+1 lies over B
(n)
1 ,B(n−1)1 , ...,B(s+1)1 ; two

possible cases
a. NO: we construct a new s-bar of lenght one over

B(n)1 ,B(n−1)1 , ...,B(s+1)1 , on the right of B(s)j , we label it as
B(s)j+1 and we construct a 1, ..., s− 1 bar of length 1 over
B(s)j+1: tN = xj+2s ; store the output in the N-th row of M.

b. YES: we must continue, repeating the procedure

Our algorithm: |X| = N > 1
• restrict the point trie to the points whose corresponding
terms lie over B(s)j+1. The set containing these points is
denoted by S and is obtained reading B(s)j+1. More
precisely, S = ψ(B(s)j+1), where

ψ : B→ T

is the function sending each 1-bar B(1)l in the term tl over
it and, inductively, for 1 < u ≤ n, ψ(B(u)h) =

⋃
B over B(u)h

ψ(B)
• read PN’s path, from level s− 1 to level 1, looking for the
�rst forking level w.r.t. S (σ-value/σ-antecedent as
before).
• repeat the test

The procedure is repeated until we get to the 1-bars or if in
the decision step we get case a.

Example

X := {P1 = (0,0),P2 = (1,0),P3 = (0, 1),P4 = (1, 1)};
lexicographical Gröbner escalier, x < y.

x2

x1
1
1

We start with t1 = 1, associated to
the �rst point, P1.

For P2 = (1,0), we have f = 1 and l = 1; t2 = x:

x2

x1
1
1

x2

x1
1
1

x
2

X := {P1 = (0,0),P2 = (1,0),P3 = (0, 1),P4 = (1, 1)};
lexicographical Gröbner escalier, x < y. Continue...

x2

x1
1
1

x
2

x2

x1
1
1

x
2

y
3

For P3 = (0, 1), we have f = 2 and l = 1; t3 = y.

x2

x1
1
1

x
2

y
3

x2

x1
1
1

x
2

y
3

x2

x1
1
1

x
2

y
3

xy
4

Finally, for P4 = (1, 1), f = 2 and l = 2; this time there is a bar
on the right of the red one. We then restrict to {P3,P4}, so we
get the new forking level to be f = 1 and the new antecedent
to be P3. This time we see that there is no bar on the right, so
we construct it and we get t4 = xy.

Implementation

A Bar Code can be implemented in C using concatenated
objects, implemented using a linked list of data structures.
We need three di�erent lists, namely one containing the
terms, one related to the single bars and one containing the
di�erent levels of the Bar Code.
Bar Code referring to the set of terms {1, x, y, z}:

x2

x1
1 x y z

Testing

Tesing activity has been executed on a machine with an
Intel(R) Core(TM) i7-8550U processor 64-bit architecture, CPU
@ 1.80GHz equipped with 8 GB of RAM. The operating system
installed on this machine was Linux Mint 19 (Tara) 64 bits.

GF(2m) Points Coord Singular Iter LG
24 256 4 1.68s 0.13s
24 256 4 5.01s 0.11s
25 1024 3 16.77s 0.13s
26 4096 3 5m 27.04s 2.18s
25 1024 3 23.06s 0.18s
26 4096 3 6m 9.29s 2.04s
28 65536 3 27h 42m 49m 27s
220 4096 2 - 37.40s

Complexity of the whole procedure

• Lauenbacher and Stigler’s complexity:

O(n2N2)+O((N3+N)(log(p))2+N2n2)+O(n(N−1)2cN+N−1).

• Lauenbacher-Stigler’s procedure can be re�ned:
complexity can become O(N2nlog(N)) + O(n2N3(log(p))2)
within the FGLM complexity O(n2N3(log(p))2)

With Degroebnerization:
• no Buchberger reduction;
• only: Iterative Lex Game + Lundvist’s formula:

O(nN2 log(N))+O(nNO(1)(log(p))2).

We reduce to degrobnerization complexity O(nN3(log(p))2).

Thank you
for your attention!

