Schur apolarity

Reynaldo Staffolani

University of Trento

MEGA conference 2021
June 7-11 2021

Table of contents

1. Introduction
2. The apolarity action
3. An example
4. Conclusion

Introduction

Introdution and basic definitions

The aim of this talk is to show the main project of my Ph.D. studies.
Inspired by the classic apolarity theory for symmetric tensors, the purpose of my work is to develop an analogue theory for tensors associated to $S L_{n+1}$-rational homogeneous variety.

Additive decompositions

We will work always over the field of complex numbers \mathbb{C}.
We are interested in the problem of finding additive decompositions of structured tensors. A notion which we will use

Definition

Let $X \subset \mathbb{P}^{N}$ be a non-degenerate irreducible variety. The X-rank of a point $p \in \mathbb{P}^{N}$ is the integer

$$
r_{X}(p):=\min \left\{r: p \in\left\langle p_{1}, \ldots, p_{r}\right\rangle, p_{i} \in X\right\}
$$

Classic apolarity theory - I

Let $X=\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{\binom{n+d}{d}-1}$ be a Veronese variety. It can be obtained as image of the embedding

$$
\begin{aligned}
\nu_{d}: \mathbb{P}(V) & \longrightarrow \mathbb{P}\left(\operatorname{Sym}^{d}(V)\right) \\
{[/] } & \left.\longmapsto I^{d}\right]
\end{aligned}
$$

Classic apolarity theory - I

Let $X=\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{\binom{n+d}{d}-1}$ be a Veronese variety. It can be obtained as image of the embedding

$$
\begin{aligned}
\nu_{d}: \mathbb{P}(V) & \longrightarrow \mathbb{P}\left(\operatorname{Sym}^{d}(V)\right) \\
{[/] } & \longmapsto\left[I^{d}\right]
\end{aligned}
$$

Given $d \geq e \geq 0$, the apolarity action is the map

$$
\varphi: \operatorname{Sym}^{d} V \otimes \operatorname{Sym}^{e} V^{*} \longrightarrow \operatorname{Sym}^{d-e} V
$$

which acts as a derivation.

Classic apolarity theory - II

Lemma (of Apolarity, [IK99])

Let $X=\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{\binom{n+d}{d}-1}$ be a Veronese variety. Let $p_{1}, \ldots, p_{r} \in X$ and $[F] \in \mathbb{P}^{\binom{n+d}{d}-1}$. The following are equivalent:
(1) there exists $c_{1}, \ldots, c_{r} \in \mathbb{C}$ such that $[F]=c_{1} p_{1}+\cdots+c_{r} p_{r}$,

Classic apolarity theory - II

Lemma (of Apolarity, [IK99])

Let $X=\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{\binom{n+d}{d}-1}$ be a Veronese variety. Let $p_{1}, \ldots, p_{r} \in X$ and $[F] \in \mathbb{P}^{\binom{n+d}{d}-1}$. The following are equivalent:
(1) there exists $c_{1}, \ldots, c_{r} \in \mathbb{C}$ such that $[F]=c_{1} p_{1}+\cdots+c_{r} p_{r}$,
(2) there is the inclusion of ideals $I\left(p_{1}, \ldots, p_{r}\right) \subset F^{\perp}$, where
-I $\left(p_{1}, \ldots, p_{r}\right)$ is the ideal of the union of the points p_{1}, \ldots, p_{r},

- F^{\perp} is the set of all derivations which kill F.

Question

Does there exist a version of the apolarity for other SL_{n+1} irreducible representations and related rational homogeneous varieties?

Question

Does there exist a version of the apolarity for other SL_{n+1} irreducible representations and related rational homogeneous varieties?

Yes for the representations $\wedge^{k} V, k \leq \operatorname{dim}(V)$, and Grassmann varieties by [ABMM21].

Question

Does there exist a version of the apolarity for other SL_{n+1} irreducible representations and related rational homogeneous varieties?

Yes for the representations $\wedge^{k} V, k \leq \operatorname{dim}(V)$, and Grassmann varieties by [ABMM21].

Yes via Non-abelian apolarity using vector bundles techniques, [LO13].

Question

Does there exist a version of the apolarity for other SL_{n+1} irreducible representations and related rational homogeneous varieties?

Yes for the representations $\wedge^{k} V, k \leq \operatorname{dim}(V)$, and Grassmann varieties by [ABMM21].

Yes via Non-abelian apolarity using vector bundles techniques, [LO13].
Yes for any representation $\mathbb{S}_{\lambda} V$ of SL_{n+1} with apolarity action

$$
\varphi: \mathbb{S}_{\lambda} V \otimes \mathbb{S}_{\mu} V^{*} \longrightarrow \mathbb{S}_{\lambda / \mu} V
$$

The apolarity action

Skew diagrams

Definition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{h}\right)$ be two partitions. We say that $\mu \subset \lambda$ if $h \leq k$ and $\mu_{i} \leq \lambda_{i}$ for all i.

Skew diagrams

Definition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{h}\right)$ be two partitions. We say that $\mu \subset \lambda$ if $h \leq k$ and $\mu_{i} \leq \lambda_{i}$ for all i.

In this case the skew Young diagram λ / μ is the diagram of λ without the diagram of μ in the left upper corner. For instance if $\lambda=(3,2,1)$ and $\mu=(2)$, then

$$
\lambda / \mu=\begin{array}{|l|}
\square \\
\hline
\end{array}
$$

Skew diagrams

Definition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{h}\right)$ be two partitions. We say that $\mu \subset \lambda$ if $h \leq k$ and $\mu_{i} \leq \lambda_{i}$ for all i.

In this case the skew Young diagram λ / μ is the diagram of λ without the diagram of μ in the left upper corner. For instance if $\lambda=(3,2,1)$ and $\mu=(2)$, then

$$
\lambda / \mu=\begin{array}{|l|}
\square \\
\square
\end{array}
$$

A skew Schur module $\mathbb{S}_{\lambda / \mu} V$ is obtained as a Schur module using the skew diagram λ / μ.

Geometry

Let λ be a partition and V vector space of dimension $n+1$. The minimal orbit X via the $S L_{n+1}$ action inside $\mathbb{P}\left(\mathbb{S}_{\lambda} V\right)$ is the Flag variety

$$
\mathbb{F}\left(k_{1}, \ldots, k_{s} ; V\right):=\left\{\left(V_{1}, \ldots, V_{s}\right): V_{1} \subset \cdots \subset V_{s} \subset V, \operatorname{dim}\left(V_{i}\right)=k_{i}\right\}
$$

embedded with $\mathcal{O}\left(d_{1}, \ldots, d_{s}\right)$.

Geometry

Let λ be a partition and V vector space of dimension $n+1$. The minimal orbit X via the $S L_{n+1}$ action inside $\mathbb{P}\left(\mathbb{S}_{\lambda} V\right)$ is the Flag variety

$$
\mathbb{F}\left(k_{1}, \ldots, k_{s} ; V\right):=\left\{\left(V_{1}, \ldots, V_{s}\right): V_{1} \subset \cdots \subset V_{s} \subset V, \operatorname{dim}\left(V_{i}\right)=k_{i}\right\}
$$

embedded with $\mathcal{O}\left(d_{1}, \ldots, d_{s}\right)$. The points of X-rank 1 are of the form

$$
\left(v_{1} \wedge \cdots \wedge v_{k_{s}}\right)^{\otimes d_{s}} \otimes \cdots \otimes\left(v_{1} \wedge \cdots \wedge v_{k_{1}}\right)^{\otimes d_{1}}
$$

representing the flag

$$
\left\langle v_{1}, \ldots, v_{k_{1}}\right\rangle \subset \cdots \subset\left\langle v_{1}, \ldots, v_{k_{s}}\right\rangle .
$$

The setting

Some particular features of the apolarity theory are the apolarity action, the ideal of a point of X-rank 1 and a ring.

Since we want tho build a global apolarity theory, we have lost some of this properties. For instance via the Littlewood-Richardson rule we may have several multiplication maps

$$
\mathbb{S}_{\lambda} V \otimes \mathbb{S}_{\mu} V \longrightarrow \mathbb{S}_{\nu} V
$$

with different ν (or not!). Hence in our theory the concepts of ring and ideal are replaced with suitable vector spaces and subspaces.

The ambient space - I

The Schur-Weyl duality tells us that there may appear several copies of $\mathbb{S}_{\lambda} V$ in the tensor algebra and they differ only on how the factors of the tensor product are symmetrized and skew-symmetrized.

The ambient space - I

The Schur-Weyl duality tells us that there may appear several copies of $\mathbb{S}_{\lambda} V$ in the tensor algebra and they differ only on how the factors of the tensor product are symmetrized and skew-symmetrized.

For example in $V^{\otimes 3}$ there are 2 copies of $\mathbb{S}_{(2,1)} V$. The h.w.v. in both of them is

$$
\begin{aligned}
& e_{1} \wedge e_{2} \otimes e_{1}=e_{1} \otimes e_{2} \otimes e_{1}-e_{2} \otimes e_{1} \otimes e_{1} \\
& e_{1} \wedge e_{2} \otimes e_{1}=e_{1} \otimes e_{1} \otimes e_{2}-e_{2} \otimes e_{1} \otimes e_{1}
\end{aligned}
$$

The ambient space - I

The Schur-Weyl duality tells us that there may appear several copies of $\mathbb{S}_{\lambda} V$ in the tensor algebra and they differ only on how the factors of the tensor product are symmetrized and skew-symmetrized.

Since we are not interested on how this tensors embeds in $V^{\otimes d}$, we reduce to work in the vector space

$$
\begin{aligned}
\mathbb{S}^{\bullet} V & :=\operatorname{Sym}^{\bullet}\left(V \oplus \wedge^{2} V \oplus \cdots \oplus \wedge^{n+1} V\right) / I^{\bullet} \\
& \simeq\left(\bigoplus_{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{N}^{n+1}} \operatorname{Sym}^{a_{1}}(V) \otimes \cdots \otimes \operatorname{Sym}^{a_{n+1}}\left(\wedge^{n+1} V\right)\right) / l^{\bullet}
\end{aligned}
$$

The ambient space - II

where for any $p \geq q \geq 0$, the ideal $/^{\bullet}$ is generated by

$$
\begin{aligned}
& \left(v_{1} \wedge \cdots \wedge v_{p}\right) \cdot\left(w_{1} \wedge \cdots \wedge w_{q}\right)- \\
& \quad \sum_{i=1}^{p}\left(v_{1} \wedge \cdots \wedge w_{1} \wedge \cdots \wedge v_{p}\right) \cdot\left(v_{i} \wedge w_{2} \wedge \cdots \wedge w_{q}\right)
\end{aligned}
$$

known as Plücker relations. Note that in $\mathbb{S}^{\bullet}(V)$ every Schur module appears once.

The apolarity action - I

The apolarity action is defined using the skew-symmetric apolarity action which is given for any $0 \leq h \leq k<\operatorname{dim}(V)$ by the composition

$$
\wedge^{h} V^{*} \otimes \wedge^{k} V \longrightarrow \wedge^{h} V^{*} \otimes \wedge^{h} V \otimes \wedge^{k-h} V \longrightarrow \wedge^{k-h} V
$$

The apolarity action - I

The apolarity action is defined using the skew-symmetric apolarity action which is given for any $0 \leq h \leq k<\operatorname{dim}(V)$ by the composition

$$
\wedge^{h} V^{*} \otimes \wedge^{k} V \longrightarrow \wedge^{h} V^{*} \otimes \wedge^{h} V \otimes \wedge^{k-h} V \longrightarrow \wedge^{k-h} V
$$

Recall then that via definiton with Young symmetrizers we have the inclusions

$$
\mathbb{S}_{\lambda} V \subset \wedge^{\lambda_{1}^{\prime}} V \otimes \cdots \otimes \wedge^{\lambda_{k}^{\prime}} V=: \wedge_{\lambda^{\prime}} V
$$

The apolarity action - II

Definition The Schur apolarity action is the map

$$
\varphi: \mathbb{S}^{\bullet} V \otimes \mathbb{S}^{\bullet} V^{*} \longrightarrow \mathbb{S}^{\bullet} V
$$

such that when restricted to $\mathbb{S}_{\lambda} V \otimes \mathbb{S}_{\mu} V^{*}$ is

- the zero map if $\mu \not \subset \lambda$,

The apolarity action - II

Definition The Schur apolarity action is the map

$$
\varphi: \mathbb{S}^{\bullet} V \otimes \mathbb{S}^{\bullet} V^{*} \longrightarrow \mathbb{S}^{\bullet} V
$$

such that when restricted to $\mathbb{S}_{\lambda} V \otimes \mathbb{S}_{\mu} V^{*}$ is

- the zero map if $\mu \not \subset \lambda$,
- otherwise it is the restriction of the map

$$
\tilde{\varphi}: \wedge_{\lambda^{\prime}} V \otimes \wedge_{\mu^{\prime}} V^{*} \longrightarrow \wedge_{\lambda^{\prime} / \mu^{\prime}} V
$$

acting as a product of skew symmetric apolarity actions

$$
\wedge^{\lambda_{i}^{\prime}} V \otimes \wedge^{\mu_{i}^{\prime}} V^{*} \longrightarrow \wedge^{\lambda_{i}^{\prime}-\mu_{i}^{\prime}} V
$$

The apolarity action - II

Definition The Schur apolarity action is the map

$$
\varphi: \mathbb{S}^{\bullet} V \otimes \mathbb{S}^{\bullet} V^{*} \longrightarrow \mathbb{S}^{\bullet} V
$$

such that when restricted to $\mathbb{S}_{\lambda} V \otimes \mathbb{S}_{\mu} V^{*}$ is

- the zero map if $\mu \not \subset \lambda$,
- otherwise it is the restriction of the map

$$
\tilde{\varphi}: \wedge_{\lambda^{\prime}} V \otimes \wedge_{\mu^{\prime}} V^{*} \longrightarrow \wedge_{\lambda^{\prime} / \mu^{\prime}} V
$$

acting as a product of skew symmetric apolarity actions

$$
\wedge^{\lambda_{i}^{\prime}} V \otimes \wedge^{\mu_{i}^{\prime}} V^{*} \longrightarrow \wedge^{\lambda_{i}^{\prime}-\mu_{i}^{\prime}} V
$$

Proposition

The image of φ is contained in $\mathbb{S}_{\lambda / \mu} V$.

The apolarity action - III

For instance, consider $\lambda=(2,2)$ and $\mu=(1,1)$. Let

$$
t=v_{1} \wedge v_{2} \otimes v_{1} \wedge v_{3}+v_{1} \wedge v_{3} \otimes v_{1} \wedge v_{2} \in \mathbb{S}_{(2,2)} \mathbb{C}^{4}
$$

and let $s=x_{1} \wedge x_{2} \in \mathbb{S}_{(1,1)} \mathbb{C}^{4}$.

The apolarity action - III

For instance, consider $\lambda=(2,2)$ and $\mu=(1,1)$. Let

$$
t=v_{1} \wedge v_{2} \otimes v_{1} \wedge v_{3}+v_{1} \wedge v_{3} \otimes v_{1} \wedge v_{2} \in \mathbb{S}_{(2,2)} \mathbb{C}^{4}
$$

and let $s=x_{1} \wedge x_{2} \in \mathbb{S}_{(1,1)} \mathbb{C}^{4}$. Then

$$
\begin{aligned}
\varphi(t \otimes s) & = \\
& =\operatorname{det}\left(\begin{array}{ll}
x_{1}\left(v_{1}\right) & x_{1}\left(v_{2}\right) \\
x_{2}\left(v_{1}\right) & x_{2}\left(v_{2}\right)
\end{array}\right) v_{1} \wedge v_{3}+\operatorname{det}\left(\begin{array}{ll}
x_{1}\left(v_{1}\right) & x_{1}\left(v_{3}\right) \\
x_{2}\left(v_{1}\right) & x_{2}\left(v_{3}\right)
\end{array}\right) v_{1} \wedge v_{2} \\
& =v_{1} \wedge v_{3}
\end{aligned}
$$

which is an element of $\mathbb{S}_{(2,2) /(1,1)} \mathbb{C}^{4}$.

The subspace associated to a point - I

Definition Let $X \subset \mathbb{P}\left(\mathbb{S}_{\lambda} V\right)$ be a Flag variety $\mathbb{F}\left(k_{1}, \ldots, k_{S} ; V\right)$ embedded with $\mathcal{O}\left(d_{1}, \ldots, d_{s}\right)$, and let p be a point of X-rank 1 . Then p represents a flag

$$
V_{1} \subset \cdots \subset V_{s} \subset V
$$

Consider the orthogonal spaces $V_{s}^{\perp} \subset \cdots \subset V_{1}^{\perp} \subset V^{*}$.

The subspace associated to a point - I

Definition Let $X \subset \mathbb{P}\left(\mathbb{S}_{\lambda} V\right)$ be a Flag variety $\mathbb{F}\left(k_{1}, \ldots, k_{S} ; V\right)$ embedded with $\mathcal{O}\left(d_{1}, \ldots, d_{s}\right)$, and let p be a point of X-rank 1 . Then p represents a flag

$$
V_{1} \subset \cdots \subset V_{s} \subset V
$$

Consider the orthogonal spaces $V_{s}^{\perp} \subset \cdots \subset V_{1}^{\perp} \subset V^{*}$. The subspace $I(p)$ associated to p is the vector subspace of $\mathbb{S}^{\bullet}\left(V^{*}\right)$ constructed in the following way:

- consider the generators of $V_{s}^{\perp}, \operatorname{Sym}^{d_{s}+1} V_{s-1}^{\perp}, \ldots$, Sym $^{d_{s}+\cdots+d_{2}+1} V_{1}^{\perp}$
- use the maps $\mathbb{S}_{\lambda} V \otimes \mathbb{S}_{\mu} V \longrightarrow \mathbb{S}_{\nu} V$ to construct $I(p)$ step by step rescricting them to $\left(I(p) \cap \mathbb{S}_{\lambda} V\right) \otimes \mathbb{S}_{\mu} V \longrightarrow \mathbb{S}_{\nu} V$

The subspace associated to a point - II

Let $p=\left(v_{1} \wedge v_{2}\right)^{\otimes 2} \in X$, where X is $\mathbb{G}\left(2, \mathbb{C}^{4}\right)$ embedded with $\mathcal{O}(2)$. In this case we have only one subspace $V_{1}=\left\langle v_{1}, v_{2}\right\rangle$ and $V_{1}^{\perp}=\left\langle x_{3}, x_{4}\right\rangle$.

One can check that via this definition we get

$$
\begin{gathered}
I \cap \mathbb{S}_{(1)}\left(\mathbb{C}^{4}\right)^{*}=\left\langle x_{3}, x_{4}\right\rangle, \\
I \cap \mathbb{S}_{(2)}\left(\mathbb{C}^{4}\right)^{*}=\left\langle x_{1} x_{3}, x_{2}, x_{3}, x_{3}^{2}, x_{3} x_{4}, x_{1} x_{4}, x_{2} x_{4}, x_{4}^{2}\right\rangle, \\
I \cap \mathbb{S}_{(1,1)}\left(\mathbb{C}^{4}\right)^{*}=\left\langle x_{1} \wedge x_{3}, x_{2} \wedge x_{3}, x_{3} \wedge x_{4}, x_{1} \wedge x_{4}, x_{2} \wedge x_{4}\right\rangle,
\end{gathered}
$$

$I \cap \mathbb{S}_{(2,1)}\left(\mathbb{C}^{4}\right)^{*}=\langle$ all the elements of the basis whose associated semi-std tableau is different from $\left.\frac{1}{\frac{1}{2}}, \frac{1}{\frac{1}{2}}{ }^{\frac{1}{2}}\right\rangle$,
$I \cap \mathbb{S}_{(2,2)}\left(\mathbb{C}^{4}\right)^{*}=\langle$ all the elements of the basis whose associated semi-std tableau is different from $\left.\begin{array}{c}\left.\frac{1}{1} \frac{1}{2}\right\rangle \\ \frac{2}{2}\end{array}\right\rangle$.

The apolarity lemma

Lemma (of apolarity) Let $f \in \mathbb{S}_{\lambda} V$ and let $p_{1}, \ldots, p_{r} \in \mathbb{S}_{\lambda} V$ points of X-rank 1. Then the following are equivalent
(1) there exist $c_{1}, \ldots, c_{r} \in \mathbb{C}$ such that $f=c_{1} p_{1}+\cdots+c_{r} p_{r}$,

The apolarity lemma

Lemma (of apolarity) Let $f \in \mathbb{S}_{\lambda} V$ and let $p_{1}, \ldots, p_{r} \in \mathbb{S}_{\lambda} V$ points of X-rank 1. Then the following are equivalent
(1) there exist $c_{1}, \ldots, c_{r} \in \mathbb{C}$ such that $f=c_{1} p_{1}+\cdots+c_{r} p_{r}$,
(2) we have the inclusion $I\left(p_{1}, \ldots, p_{r}\right) \subset f^{\perp}$, where f^{\perp} is the subspace of $\mathbb{S}^{\bullet} V^{*}$ of el. which kill f via the Schur apolarity action.

The apolarity lemma

Lemma (of apolarity) Let $f \in \mathbb{S}_{\lambda} V$ and let $p_{1}, \ldots, p_{r} \in \mathbb{S}_{\lambda} V$ points of X-rank 1. Then the following are equivalent
(1) there exist $c_{1}, \ldots, c_{r} \in \mathbb{C}$ such that $f=c_{1} p_{1}+\cdots+c_{r} p_{r}$,
(2) we have the inclusion $I\left(p_{1}, \ldots, p_{r}\right) \subset f^{\perp}$, where f^{\perp} is the subspace of $\mathbb{S}^{\bullet} V^{*}$ of el. which kill f via the Schur apolarity action.
Idea of the proof. (\Rightarrow) Assume that $f=c_{1} p_{1}+\cdots+c_{r} p_{r}$. Then since every $I\left(p_{i}\right)$ kills p_{i} we get (2).
(\Leftarrow) Assume that (2) holds. At first prove that $I\left(p_{i}\right) \cap \mathbb{S}_{\lambda} V=p_{i}^{\perp} \cap \mathbb{S}_{\lambda} V$. From this it follows that, since $I\left(p_{1}, \ldots, p_{r}\right) \cap \mathbb{S}_{\lambda} V \subset f^{\perp} \cap \mathbb{S}_{\lambda} V$, we get $\langle f\rangle \subset\left\langle p_{1}, \ldots, p_{r}\right\rangle$.

An example

Example - I

Consider the complete Flag variety $X=\mathbb{F}\left(1,2,3 ; \mathbb{C}^{4}\right)$ embedded with $\mathcal{O}(1,1,1)$ in $\mathbb{P}\left(\mathbb{S}_{(3,2,1)} \mathbb{C}^{4}\right)$.

We would like to compute the X-rank of the tensor

$$
t=v_{1} \wedge v_{2} \wedge v_{3} \otimes v_{1} \wedge v_{2} \otimes v_{3}-v_{1} \wedge v_{2} \wedge v_{3} \otimes v_{2} \wedge v_{3} \otimes v_{1}
$$

Example - I

Consider the complete Flag variety $X=\mathbb{F}\left(1,2,3 ; \mathbb{C}^{4}\right)$ embedded with $\mathcal{O}(1,1,1)$ in $\mathbb{P}\left(\mathbb{S}_{(3,2,1)} \mathbb{C}^{4}\right)$.

We would like to compute the X-rank of the tensor

$$
t=v_{1} \wedge v_{2} \wedge v_{3} \otimes v_{1} \wedge v_{2} \otimes v_{3}-v_{1} \wedge v_{2} \wedge v_{3} \otimes v_{2} \wedge v_{3} \otimes v_{1}
$$

Suppose its X-rank is 1 , i.e. it represents a flag $V_{1} \subset V_{2} \subset V_{3} \subset \mathbb{C}^{4}$. Hence look for V_{3}^{\perp}, Sym $^{2} V_{2}^{\perp}$ and $\operatorname{Sym}^{3} V_{1}^{\perp}$ inside t^{\perp}. Since

$$
\operatorname{ker}\left(\varphi^{(3,2,1),(1)}\right)=\left\langle x_{4}\right\rangle
$$

we may assume that $V_{3}=\left\{x_{4}=0\right\}$.

Example - II

Now we want to check if $\mathrm{Sym}^{2} V_{2}^{\perp} \subset t^{\perp}$. Since $V_{3}^{\perp} \subset V_{2}^{\perp}$ we may assume that $V_{2}^{\perp}=\left\langle x_{4}, I\right\rangle$ and hence we must find I^{2} in $\operatorname{ker}\left(\varphi^{(3,2,1),(2)}\right)$. Since

$$
\operatorname{ker}\left(\varphi^{(3,2,1),(2)}\right)=\left\langle x_{1} x_{4}, x_{2} x_{4}, x_{3} x_{4}, x_{4}^{2}\right\rangle
$$

we conclude that there is no $I^{2} \neq x_{4}^{2}$ in this kernel and hence t has not X-rank 1 .

Example - II

Now we want to check if $\mathrm{Sym}^{2} V_{2}^{\perp} \subset t^{\perp}$. Since $V_{3}^{\perp} \subset V_{2}^{\perp}$ we may assume that $V_{2}^{\perp}=\left\langle x_{4}, I\right\rangle$ and hence we must find I^{2} in $\operatorname{ker}\left(\varphi^{(3,2,1),(2)}\right)$. Since

$$
\operatorname{ker}\left(\varphi^{(3,2,1),(2)}\right)=\left\langle x_{1} x_{4}, x_{2} x_{4}, x_{3} x_{4}, x_{4}^{2}\right\rangle
$$

we conclude that there is no $I^{2} \neq x_{4}^{2}$ in this kernel and hence t has not X-rank 1. Suppose it has X-rank 2 and the associated flags are

$$
V_{1} \subset V_{2} \subset\left\{x_{4}=0\right\}, W_{1} \subset W_{2} \subset\left\{x_{4}=0\right\} .
$$

We can note that if $V_{2}^{\perp}=\left\langle x_{4}, x_{1}-x_{3}\right\rangle$ and $W_{2}^{\perp}=\left\langle x_{4}, x_{1}+x_{3}\right\rangle$, then

$$
\operatorname{Sym}^{2} V_{2}^{\perp} \cap \operatorname{Sym}^{2} W_{2}^{\perp}=\left\langle x_{4}\right\rangle
$$

is contained in t^{\perp}.

Example - III

Similarly one can check that given $V_{1}^{\perp}=\left\langle x_{4}, x_{1}-x_{3}, x_{2}\right\rangle$ and $W_{1}^{\perp}=\left\langle x_{4}, x_{1}+x_{3}, x_{2}\right\rangle$, then

$$
\operatorname{Sym}^{3} V_{1}^{\perp} \cap \operatorname{Sym}^{3} W_{1}^{\perp}=\left\langle x_{4}^{3}, x_{2} x_{4}^{2}, x_{2}^{2} x_{4}, x_{2}^{3}\right\rangle
$$

is contained in t^{\perp}.

Example - III

Similarly one can check that given $V_{1}^{\perp}=\left\langle x_{4}, x_{1}-x_{3}, x_{2}\right\rangle$ and $W_{1}^{\perp}=\left\langle x_{4}, x_{1}+x_{3}, x_{2}\right\rangle$, then

$$
\operatorname{Sym}^{3} V_{1}^{\perp} \cap \operatorname{Sym}^{3} W_{1}^{\perp}=\left\langle x_{4}^{3}, x_{2} x_{4}^{2}, x_{2}^{2} x_{4}, x_{2}^{3}\right\rangle
$$

is contained in t^{\perp}. At this point we may try to decompose t as a sum of two points related to these flags

$$
\begin{aligned}
t=a\left(v_{1}+v_{3}\right) & \wedge v_{2} \wedge v_{3} \otimes\left(v_{1}+v_{3}\right) \wedge v_{2} \otimes\left(v_{1}+v_{3}\right)+ \\
& +b\left(v_{1}-v_{3}\right) \wedge v_{2} \wedge v_{3} \otimes\left(v_{1}-v_{3}\right) \wedge v_{2} \otimes\left(v_{1}-v_{3}\right)
\end{aligned}
$$

and check that we have the equality for $a=-b=\frac{1}{2}$. Hence t has X-rank 2.

Conclusion

Conclusion

Questions \& work in progress:

- does there exist a way to build an apolarity with the same features of the classic and skew-symmetric case?
- definition of an algorithm which distinguishes tensors of border X-rank 2 where $X=(\mathbb{G}(k, V), \mathcal{O}(d))$.
- does this apolarity give informations about the dimension of secant varieties of rational homogeneous varieties?

References

- [IK99] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Springer, 1999
- [ABMM21] E. Arrondo, A. Bernardi, P. M. Marques and B. Mourrain, Skew-symmetric tensor decomposition, Communications in contemporary mathematics, 2021
- [LO13] J. M. Landsberg and G. Ottaviani, Equations for secant varieties of Veronese and other varieties, Annali di matematica pura e applicata, 2013

Thanks for the attention!

