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Nonnegativity certificates

Let p ∈ R[x1, . . . , xn]d be a polynomial and S ⊆ Rn.

Definition (nonnegativity certificate)

A certificate of nonnegativity (usually) is a representation of p that makes its
nonnegativity over S apparent.

• Sum-of-squares (SOS)

• Sum-of-nonnegative-circuit-polynomials (SONC)

• etc.

• Different: dual certificates (see Maria Macaulay’s talk)

Optimization = certified upper bound (a point x ∈ S) + certified lower bound

(nonnegativity certificate for some p − c).
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SONC polynomials

• Polynomials certifiably nonnegative by the AM/GM inequality.
(“agiforms”, [Reznick 1989])

• Systematically/computationally studied by de Wolff et al. [2016–]

• Related: Ghasemi and Marshall; Chandrasekaran and Shah (SAGE)

Basic idea (example):

• the Motzkin polynomial m(x , y) = x4y2 + x2y4 − 3x2y2 + 1 is not SOS
but is nonnegative,

• because each monomial is nonnegative and x4y2+x2y4+1
3 ≥ x2y2.

• Easily generalized to weighted AM/GM.

3 / 20



Nonnegativity certificates and SONC Support of SONC decompositions Optimal SONC bounds and circuit generation

SONC polynomials

• Polynomials certifiably nonnegative by the AM/GM inequality.
(“agiforms”, [Reznick 1989])

• Systematically/computationally studied by de Wolff et al. [2016–]

• Related: Ghasemi and Marshall; Chandrasekaran and Shah (SAGE)

Basic idea (example):

• the Motzkin polynomial m(x , y) = x4y2 + x2y4 − 3x2y2 + 1 is not SOS
but is nonnegative,

• because each monomial is nonnegative and x4y2+x2y4+1
3 ≥ x2y2.

• Easily generalized to weighted AM/GM.

4 / 20



Nonnegativity certificates and SONC Support of SONC decompositions Optimal SONC bounds and circuit generation

SONC polynomials

Definition (circuit polynomial)

An n-variate polynomial p is a circuit polynomial if it is given by
p(x) =

∑r
i=1 pαix

αi + pβxβ, where

• supp(p) = {α1, . . . ,αr ,β} is minimally affinely dependent and

• β ∈ conv({α1, . . . ,αr}).
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SONC polynomials

Proposition (Iliman & de Wolff, 2016)

Let p be an n-variate circuit polynomial satisfying p(x) =
∑r

i=1 pαix
αi + pβxβ

for some real coefficients pαi and pβ and suppose that β =
∑r

i=1 λiαi with
some λi > 0 satisfying

∑r
i=1 λi = 1.

Then p is nonnegative if and only if αi ∈ (2N)n and pαi > 0 for each i , and at
least one of the following two alternatives holds:

1. β ∈ (2N)n and pβ ≥ 0, or

2. |pβ| ≤
∏r

i=1

(
pαi

λi

)λi

.

• Makes the recognition of a nonnegative circuit polynomial straightforward.
• SONC = Minkowski sum of nonnegative circuit polynomials with different

supports.
• Optimal SONC bounds and certificates?

inf{p(x) | x ∈ Rn} = sup{c | p−c is nonnegative} ≥ sup{c | p−c is SONC}.
6 / 20



Nonnegativity certificates and SONC Support of SONC decompositions Optimal SONC bounds and circuit generation

SONC polynomials and convex conic representations

|pβ| ≤
r∏

i=1

(
pαi

λi

)λi

(λ > 0,
r∑

i=1

λi = 1)

• This inequality is convex in the coefficients of p.
• (Dressler et al. 2017): it can be represented using O(r) relative entropy

and linear constraints.
• (Wang & Magron, 2020): it can be represented using second-order cone

constraints.
• Lifted SOCP representation also follows from (Alizadeh & Goldfarb, 2003).

• In this talk: treat it as a single convex (dual power) cone constraint (no
lifting).
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SONC polynomials and power cones

Definition (the power cone and its dual)

The (generalized) power cone with signature λ = (λ1, . . . , λr ) ∈ (0, 1)r is the
convex cone defined as

Pλ
def
=

{
(v,w) ∈ Rr

+ × R

∣∣∣∣∣ |w | ≤
r∏

i=1

vλi

i

}
.

The dual of this (closed, pointed, full-dimensional) convex cone is

P∗λ
def
=

{
(v,w) ∈ Rr

+ × R

∣∣∣∣∣ |w | ≤
r∏

i=1

(
vi
λi

)λi
}
.

In other words, |pβ| ≤
∏r

i=1

(
pαi

λi

)λi

⇐⇒
(
(pα1 , . . . , pαr ), pβ

)
∈ P∗λ.

• Note that the cone depends on the circuit supp(p) = {α1, . . . ,αr ,β}
only through its λ vector.
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Theoretical consequences

The conic formulation allows for simple (convex) analysis on the SONC cone.

Theorem (P., 2019)

Every SONC polynomial p has a SONC decomposition in which every
nonnegative circuit polynomial is supported on a subset of supp(p).

• A generalization of (Wang, 2019).

• Proof is an elementary application of convex programming duality.
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Support of SONC decompositions

• Fix a set of circuits C = {C 1, . . . ,CN} covering supp(p).

• Let S(C) be the set of SONC polynomials corresponding to C.

• Let V be the vertices of New(p), and consider the optimization problem

minimize
γ∈RV

+

∑
α∈V

γα

subject to (x 7→ p(x) +
∑
α∈V

γαx
α) ∈ S(C).

(P)

• Its dual can be written as

maximize
y∈Rsupp(p)

− pTy

subject to (yα)α∈C j ∈ Pλ(C j ) j = 1, . . . ,N

yα ≥ 0 α ∈ supp(p) ∩ (2N)n,

yα ≤ 1 α ∈ V .

(D)
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Support of SONC decompositions

• Both the primal and dual problem have optimal solutions, and strong
duality holds (min = max ).

• Consider two instances of these primal-dual pairs:

1. where C is the set of all circuits ⊆ supp(p), and
2. where C is the set of all circuits ⊆ New(p) ∩ Nn.

• The optimal solutions of the first pair are optimal solutions of the second
pair, proving that f ∈ S(C) holds either for both set of circuits or for
neither.

• The proof of the last statement uses linear(!) programming to argue that
the extra power cone constraints are redundant.

11 / 20



Nonnegativity certificates and SONC Support of SONC decompositions Optimal SONC bounds and circuit generation

Computational consequences

• To find the optimal SONC bound (using all possible circuits), we need to
solve

inf{γ | p + γ ∈ S(C)}.
• The previous theorem helps reduce C.

• The number of circuits (and dual power cone constraints) is still
exponential!

• Various heuristics have been proposed for a selection of “good” circuits.
(Seidler, de Wolff, Dressler, etc.)

• The proof suggests a different approach:
• Iteratively identify and add the “useful” circuits using the dual problem.
• Stop with a certificate that no circuits can improve the bound.
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Computational consequences

Algorithm 1: Optimal SONC bound with iterative circuit generation

input : A polynomial p.
outputs: The optimal SONC lower bound for p and a SONC decomposition

certifying the bound.
1 initialize C = {C 1, . . . ,CN}
2 repeat
3 solve (P)-(D) for the optimal SONC bound γ∗ and dual vector y∗

4 find circuits C ⊆ supp(p) whose power cone constraint is violated
5 if no such circuit exists then
6 return γ∗ and the SONC decomposition of p + γ∗

7 else
8 add the circuit(s) C found in Step 4 to C
9 end if

10 until false

Step 4 amounts to solving < | supp(p)| small linear programs. (No enumeration.)
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Example

Consider the polynomial p given by

p(x1, x2) = 1 + x2
2 − x2

1 x
2
2 + x2

1 x
6
2 + x6

1 x
2
2 .

• p clearly has a SONC lower bound that we can get by taking
C = {C1} = {{(0, 0), (2, 6), (6, 2), (2, 2)}}.

• Solving the (P)-(D) problems, we obtain γ∗ = − 7
8 and the SONC

decomposition

p(x1, x2)− 7

8
= (x2)2 +

(
1

8
+ x2

1 x
6
2 + x6

1 x
2
2 − x2

1 x
2
2

)
︸ ︷︷ ︸

nonneg . circuit poly .

.

• The dual optimal solution is y∗ = (1, 0, 1
4 ,

1
16 ,

1
16 ).

• Circuit generation: (next slide)
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Example cont’d

• Circuit generation:

1. No circuit with (0, 2) as an inner exponent can violate its corresponding
power cone constraint.

2. C2 = {(0, 2), (6, 2), (2, 2)}, with signature λ(C2) =
(

2
3
, 1

3

)
violates its

power cone constraint.

• Reoptimize with C = {C1,C2}: γ∗ = −1, the new SONC decomposition is

p(x1, x2)− 1 = x2
1 x

6
2 +

(
x2

2 + x6
1 x

2
2 − x2

1 x
2
2

)︸ ︷︷ ︸
nonneg . circuit poly(C2)

.

• The new dual solution is y∗ = (1, 0, 0, 0, 0).

• Circuit generation: no circuits violate their power cone constraint.

• This is the optimal SONC bound. (In this case, 1 is also the global
minimum.)
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Implementation

Some practical consideration for the implementation:

• We can solve the (P)-(D) instances in each iteration using an SOCP
(following Wang & Magron), which allows for an “off-the-shelf”
implementation.
• Reconstructing the optimal dual vector from the lifted dual vector isn’t

obvious, though!

• We can also optimize directly over Cartesian products of power cones
(and their duals) using interior-point methods of non-symmetric cone
programming.

• We used alfonso (open source, Matlab) for the conic programs.
• Avoids the lifting necessary to represent the problems as an SOCP.
• Efficient: same complexity of solving linear programs of the same size.
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Numerical experiments

Questions of interest:

1. How many circuit generation iterations are needed?

2. How many circuits until the algorithm stops?

Used two sets of test problems:

1. The largest problems of (Seidler & de Wolff, 2018) with general (not
simplex) Newton polytopes.
(438 instances; 4 ≤ n ≤ 40, 6 ≤ d ≤ 60; sparse.)

2. Random instances with n = 25, d = 8, all exponents even, with varying
| supp(p)| up to the maximum.
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Numerical experiments

How many circuit generation iterations are needed?
• Appears clearly sublinear in | supp(p)|.
• The largest number encountered was 9.
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Numerical experiments

How many circuits until the algorithm stops?

• The final/initial set of circuits appears to increase linearly with | supp(p)|
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Summary and references

• Optimal SONC bounds can be computed quickly without resorting to
approximations or circuit selection heuristics.

• The circuit generation algorithm identifies the “right” circuits efficiently.

• For a given set of circuits, the SONC decomposition can be computed
using non-symmetric cone optimization, circumventing costly
characterizations of the SONC cone as the projection of “simpler”
high-dimensional cones.

N D.P.: Duality of sum of nonnegative circuit polynomials and optimal SONC
bounds. https://arxiv.org/abs/1912.04718

N D.P. and S. Yıldız: alfonso: Matlab package for nonsymmetric conic
optimization. INFORMS Journal on Computing.
https://arxiv.org/abs/2101.04274

. Matlab code: https://github.com/dpapp-github/alfonso
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Running time / number of circuits (Seidler–de Wolff)
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Running time / number of circuits (larger instances)
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