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Nonnegativity certificates

Let p € R[xq,...,Xxp]d be a polynomial and S C R".

Definition (nonnegativity certificate)

A certificate of nonnegativity (usually) is a representation of p that makes its
nonnegativity over S apparent.

Sum-of-squares (SOS)
® Sum-of-nonnegative-circuit-polynomials (SONC)

® etc.

Different: dual certificates (see Maria Macaulay's talk)

Optimization = certified upper bound (a point x € S) + certified lower bound
(nonnegativity certificate for some p — c).
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SONC polynomials

® Polynomials certifiably nonnegative by the AM/GM inequality.
(“agiforms”, [Reznick 1989])

¢ Systematically/computationally studied by de Wolff et al. [2016-]
® Related: Ghasemi and Marshall; Chandrasekaran and Shah (SAGE)

3/20



ecompositions

0O@0000

Nonnegativity certificates and SONC Support of SONC

SONC polynomials

® Polynomials certifiably nonnegative by the AM/GM inequality.
(“agiforms”, [Reznick 1989])

¢ Systematically/computationally studied by de Wolff et al. [2016-]
® Related: Ghasemi and Marshall; Chandrasekaran and Shah (SAGE)

Basic idea (example):

® the Motzkin polynomial m(x,y) = x*y? + x?y* — 3x?y? + 1 is not SOS
but is nonnegative,

4 2 2.4
® because each monomial is nonnegative and %XVH > x%y2.
® Easily generalized to weighted AM/GM.

C bounds and circuit gen

eration
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Definition (circuit polynomial)
An n-variate polynomial p is a circuit polynomial if it is given by
p(x) = >I_; pa;X™ + pgx?, where

® supp(p) = {a,...,a,, B} is minimally affinely dependent and

° B econv({ay,...,a.}).

outer exponents (um-)
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Optimal SONC bounds and circuit generation
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SONC polynomials

Proposition (lliman & de Wolff, 2016)

Let p be an n-variate circuit polynomial satisfying p(x) = > :_; Pa,X* + ppxP
for some real coefficients p.; and pg and suppose that 3 = Z,le Ao with
some \; > 0 satisfying Y ._, \; = 1.

Then p is nonnegative if and only if a; € (2N)" and pe,, > 0 for each i, and at
least one of the following two alternatives holds:

1. B € (2N)" and pg > 0, or
A
2. |psl < Ilizy (p;,-i>

® Makes the recognition of a nonnegative circuit polynomial straightforward.

® SONC = Minkowski sum of nonnegative circuit polynomials with different
supports.

e Optimal SONC bounds and certificates?

inf{p(x)|x € R"} = sup{c | p—c is nonnegative} > sup{c| p—c is SONC}.
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SONC polynomials and convex conic representations

r A r
Pa;
ol <I1(5)  @=0.3n-1)
i=1 ! i=1

® This inequality is convex in the coefficients of p.
® (Dressler et al. 2017): it can be represented using O(r) relative entropy
and linear constraints.
® (Wang & Magron, 2020): it can be represented using second-order cone
constraints.
® Lifted SOCP representation also follows from (Alizadeh & Goldfarb, 2003).

® In this talk: treat it as a single convex (dual power) cone constraint (no
lifting).

7/20



Nonnegativity certificates and SONC
00000e

SONC polynomials and power cones

Definition (the power cone and its dual)

The (generalized) power cone with signature X\ = (A1,...,A,) € (0,1)" is the
convex cone defined as

|w| <1L[v,->"'}.

i=1

Py {(v7w) eR} xR

The dual of this (closed, pointed, full-dimensional) convex cone is
r v: )\,‘

wi=TI(5) } .
i=1 N

Ai
In other words, |pg| < T]'_; ( ) < ((Pay>---+Pa,), PB) € Pj.

® Note that the cone depends on the circuit supp(p) = {1, ..., a,, B}
only through its A vector.

« def
= {(V,W)ER;XR

Pa;
A
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Theoretical consequences

The conic formulation allows for simple (convex) analysis on the SONC cone.
Theorem (P., 2019)

Every SONC polynomial p has a SONC decomposition in which every
nonnegative circuit polynomial is supported on a subset of supp(p).

® A generalization of (Wang, 2019).

® Proof is an elementary application of convex programming duality.
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Support of SONC decompositions

® Fix a set of circuits C = {C!,..., CN} covering supp(p).

¢ Let S(C) be the set of SONC polynomials corresponding to C.
® et V be the vertices of New(p), and consider the optimization problem

minimize Z Yo
vERY acV (P)
subject to (x — p(x) + Z Yax%) € S(C).
acV

® |ts dual can be written as
maximize —ply
yERsupp(p)
subject t0 (Vo )acci € Prxciy j=1,...,N (D)
Ya >0  aesupp(p) N (2N)",
Ya <1 acV.
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Support of SONC decompositions

® Both the primal and dual problem have optimal solutions, and strong
duality holds (min = max).
® Consider two instances of these primal-dual pairs:
1. where C is the set of all circuits C supp(p), and
2. where C is the set of all circuits C New(p) N N".
® The optimal solutions of the first pair are optimal solutions of the second
pair, proving that £ € S(C) holds either for both set of circuits or for
neither.
® The proof of the last statement uses linear(!) programming to argue that
the extra power cone constraints are redundant.
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Computational consequences

® To find the optimal SONC bound (using all possible circuits), we need to
solve

inf{y|p+~€S(C)}
® The previous theorem helps reduce C.

® The number of circuits (and dual power cone constraints) is still
exponential!

® Various heuristics have been proposed for a selection of “good” circuits.
(Seidler, de Wolff, Dressler, etc.)

® The proof suggests a different approach:

® |[teratively identify and add the “useful” circuits using the dual problem.
® Stop with a certificate that no circuits can improve the bound.
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Computational consequences
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Algorithm 1: Optimal SONC bound with iterative circuit generation

input : A polynomial p.
outputs: The optimal SONC lower bound for p and a SONC decomposition
certifying the bound.
initialize C = {Ct,...,CN}
repeat
solve (P)-(D) for the optimal SONC bound +* and dual vector y*
find circuits C C supp(p) whose power cone constraint is violated
if no such circuit exists then
return v* and the SONC decomposition of p + v*
else
add the circuit(s) C found in Step 4 to C
end if

until false

Step 4 amounts to solving < | supp(p)| small linear programs. (No enumeration.)
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Example

Consider the polynomial p given by
p(x1,x2) = 14 x5 — x2x3 + x2x5 + xPx3.
p clearly has a SONC lower bound that we can get by taking
C= {Cl} = {{(Oa 0)7 (27 6)a (6’ 2)7 (2a 2)}}
Solving the (P)-(D) problems, we obtain v* = —£ and the SONC

decomposition

7 1
L) — § = (e + (5 + 8 + x4 — ).

nonneg. circuit poly.

The dual optimal solution is y* = (1,0, 7, 1%, 15 ).

([ ]
_

e Circuit generation: (next slide)
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Example cont'd

e Circuit generation:
1. No circuit with (0,2) as an inner exponent can violate its corresponding

power cone constraint.
2. G ={(0,2),(6,2),(2,2)}, with signature A(C;) = (3, 3) violates its
power cone constraint.

® Reoptimize with C = {Cy, G }: +* = —1, the new SONC decomposition is

plxt ) — 1= X + (6 +x08 — xBx3)

nonneg. circuit poly(Cy)

The new dual solution is y* = (1,0,0,0,0).
e Circuit generation: no circuits violate their power cone constraint.

This is the optimal SONC bound. (In this case, 1 is also the global
minimum.)
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Implementation

Some practical consideration for the implementation:

® \We can solve the (P)-(D) instances in each iteration using an SOCP
(following Wang & Magron), which allows for an “off-the-shelf"
implementation.

® Reconstructing the optimal dual vector from the lifted dual vector isn't
obvious, though!

® We can also optimize directly over Cartesian products of power cones
(and their duals) using interior-point methods of non-symmetric cone
programming.

® We used alfonso (open source, Matlab) for the conic programs.

® Avoids the lifting necessary to represent the problems as an SOCP.
® Efficient: same complexity of solving linear programs of the same size.
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Support of SONC decompositions

Numerical experiments

Questions of interest:

1. How many circuit generation iterations are needed?

2. How many circuits until the algorithm stops?

Used two sets of test problems:

1. The largest problems of (Seidler & de Wolff, 2018) with general (not
simplex) Newton polytopes.
(438 instances; 4 < n < 40, 6 < d < 60; sparse.)

2. Random instances with n = 25, d = 8, all exponents even, with varying
| supp(p)| up to the maximum.
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Numerical experiments

How many circuit generation iterations are needed?
® Appears clearly sublinear in |supp(p)|.
® The largest number encountered was 9.

IS a -

number of iterations
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number of monomials

Optimal SONC bounds and circuit generation
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Numerical experiments

How many circuits until the algorithm stops?

® The final/initial set of circuits appears to increase linearly with | supp(p)]

3.5

3.0

2.0

final £ circuits / initial # circuits

| | | | | | I I I I I I I I I I | I I I
165 330 495 660 825 990 1155 1320 1485 1651 1816 1981 2146 2311 2476 2641 2806 2971 3136 3301
number of monomials
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Summary and references

+3

Optimal SONC bounds can be computed quickly without resorting to
approximations or circuit selection heuristics.

The circuit generation algorithm identifies the “right” circuits efficiently.

For a given set of circuits, the SONC decomposition can be computed
using non-symmetric cone optimization, circumventing costly
characterizations of the SONC cone as the projection of “simpler”
high-dimensional cones.

D.P.: Duality of sum of nonnegative circuit polynomials and optimal SONC
bounds. https://arxiv.org/abs/1912.04718

D.P. and S. Yildiz: alfonso: Matlab package for nonsymmetric conic
optimization. INFORMS Journal on Computing.
https://arxiv.org/abs/2101.04274

Matlab code: https://github.com/dpapp-github/alfonso
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Running time / number of circuits (Seidler—de Wolff)
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Running time / number of circuits (larger instances)
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