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Outline

1. Introduction

Throughout this talk, a “curve” means a non-singular and geometrically 
irreducible projective variety of dimension one, unless otherwise noted. 



Motivation

 Parametrizing the space of curves of given genus
•This is a very basic and classical problem in the theory of algebraic curves.

•We consider to parameterize the space of curves by an explicit equation.

• It is desirable that the number of parameters is equal or close to the

dimension of the space.

• In this talk, such a parameterization is said to be effective.

 Hyperelliptic case is well-known, but non-hyper elliptic case is… 
•Any hyperelliptic curve of genus 𝑔 is given by

𝑦2 = 𝑓 𝑥

with deg 𝑓(𝑥) = 2𝑔 + 1 or 2𝑔 + 2, where 𝑔 is the genus.

•How about the non-hyperelliptic case for 𝑔 ≥ 3?
➢ Note: Any curve of genus 𝑔 = 1,2 is hyperelliptic.
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Some known parameterizations in genus 𝑔 = 3,4

 Genus 3: Canonically embedded into ℙ2

➢ Bergstrӧm proved that a canonical curve of genus 3 over a field

admitting a rational point over a field of characteristic ≠ 2,3 is given by

a quartic with 7 parameters (cf. the moduli dimension is 6).

See Proposition 3.7 of the following paper for details.

 Genus 4: Canonically embedded into ℙ3

➢ Complete intersection 𝑉 𝑄, 𝑃 of a quadratic 𝑉(𝑄) and a cubic 𝑉(𝑃)

➢ The authors gave an effective parametrization of the space of 𝑉(𝑄, 𝑃)’s
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Our contribution 

 For 𝑔 = 5, we present an effective parameterization:
(A) We prove that any non-hyperelliptic and non-trigonal curve 𝐶 of 

genus 5 is the desingularization of a sextic 𝐶′ in ℙ2 (in most cases 𝐶′

has five double points). We need 12 parameters to describe 𝐶′having
fixed five double points, where 12 is just the dimension of their 
moduli space. Very effective!

(B) Based on the parametrization, we present an algorithm to enumerate

generic (defined in a slide below) curves of genus 5 over 𝐅𝑞 with

many rational points.

(C) For 𝐾 = 𝐅3, we determine all the possible positions of singular points

of 𝐶′. For each position, we executed the algorithm given in (B) over

MAGMA. We obtain curves over 𝐾 with many 𝐅9-rational points. 
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Curves of genus 5
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• Hyperelliptic curve:
𝑦2 = 𝑓 𝑥

with deg 𝑓 𝑥 = 11, 12.
• Trigonal curve 𝐶:

By definition, there exists a dominant morphism
𝐶 → ℙ1

of degree 3. 
A realization: the desingularization of a quintic in ℙ2

with a single singular point of multiplicity two.

• The other case (non-hyperlliptic and non-trigonal)
In this case, complete intersection 𝑉 𝜑1, 𝜑2, 𝜑3

of three quadratic forms 𝜑1, 𝜑2, 𝜑3 in ℙ4.

M. Kudo and S. Harashita: Superspecial trigonal curves of genus 5, 
Experimental Mathematics, Published online: 16 Apr. 2020.



Non-hyperelliptic and non-trigonal curves
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• The complete intersection in ℙ4:
𝐶 = 𝑉 𝜑1, 𝜑2, 𝜑3 ,

where 𝜑𝑖 (𝑖 = 1,2,3) are quadratic forms. 
• Sextic model:

From the complete intersection above with a divisor 
𝑃 + 𝑄 for two distinct points 𝑃 and 𝑄 on 𝐶,
a “projection” using 𝑃 + 𝑄 from ℙ4 to ℙ2, we can 
construct a sextic form 𝐹 in 3 variables so that

𝐶’ = 𝑉(𝐹)
in ℙ2 is birational to 𝐶.  If 𝐶 and 𝑃 + 𝑄 is defined over 
𝐾, then 𝐶’ is also defined over 𝐾. (The assumption 
that 𝑃 + 𝑄 is defined over 𝐾 does not matter for our 
purpose to find curves with many rational points.)



Singularities of sextic models
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• Sextic model:
𝐶’ = 𝑉(𝐹)

• Sextic model 𝐶’ has singularities.
Those should be classified.

• We study a generic case, i.e., when the genus formula

𝑔 𝐶 =
(𝑑 − 1)(𝑑 − 2)

2
− ෍

𝑃

𝑚𝑃 𝑚𝑃 − 1

2

with 𝑑 = 6 and the multiplicity 𝑚𝑃 at 𝑃 holds. This 
case is given by I and II below.

• Several types of singularities on 𝐶’ = 𝑉(𝐹)
I. Five double points 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5
II. One triple point 𝑃1 and two double points 𝑃2, 𝑃3
III. Other cases (bad singularities: future work.)



Moduli theoretic viewpoint (Case I: generic case)
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#{monomials of degree 6 in 3 variables} = 28. For each 
singular point 𝑃 ∈ {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5}, we have three linear 
equations assuring that the 𝑃 is a double point, i.e.,
for example: if 𝑃 ∉ 𝑉 𝑧 , then 𝐹(𝑃) = 𝐹𝑥(𝑃) = 𝐹𝑦(𝑃) = 0.

The linear independence of 5 × 3 linear equations is checked.
Considering a scalar multiplication to the whole sextic, the 
number of free parameters is

28 − 5 × 3 − 1 = 12.
This 12 is just the dim. of the moduli of curves of genus 5!,
where dim. of choices of two points on 𝐶 making 𝐶 → 𝐶’ and 
the dim. of the space of 5 points on ℙ2 up to Aut(ℙ2) are both 
2 and are considered to be canceled. The parametrization by 
the sextic models is very effective!



Remark on arrangement of singularities
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• We consider the following two cases:
I. Five double points 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5
II. One triple point 𝑃1 and two double points 𝑃2, 𝑃3

Proposition
(1) In case I, if distinct four elements of 

𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5
are contained in a hyperplane, then C′ is geometrically   
reducible.

(2) In case II, if 𝑃1, 𝑃2, 𝑃3 are contained in a hyperplane,
then C′ is geometrically reducible.
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Enumeration of curves with many rational points (1/2)

 A sextic form 𝐹 giving a model of genus-5 generic curve
•𝐹 has 28 unknown coefficients (write 𝑎1, … , 𝑎28)

• (𝑎1, … , 𝑎28) is a solution of a system of 15 linear equations derived from

the definition of the multiplicity of a singular point.
➢ e.g. If 𝑉(𝐹) is singular at 𝑃 = (𝑎: 𝑏: 1) with multiplicity 2, then the linear and

constant parts of 𝐹(𝑋 + 𝑎, 𝑋 + 𝑏, 1) are zero. ⟹ Obtain 3 equations.

•𝐹 is irreducible and 𝑉(𝐹) has geometric genus 5.

 An algorithm to enumerate curves with many rational points
➢ Regarding 𝑎1, … , 𝑎28 as indeterminates, we can construct an algorithm

(see Section 3 of our paper for details) to enumerate genus-5 generic

curves 𝐶 with #𝐶(𝐅𝑞) ≥ 𝑁, where 𝑁 is given.

➢ Counting #𝐶(𝐅𝑞), we use a formula given in the next slide.
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Enumeration of curves with many rational points (2/2)

 Formula for the number of rational points
• For 𝐾 = 𝐅𝑞, we have

#𝐶 𝐅𝑞 = #𝐶′(𝐅𝑞) + σ𝑃∈Sing(𝐶′) #𝑉 ℎ𝑃 𝐅𝑞 − 1 ,

where
➢ ℎ𝑃 is the homogeneous part of the least degree (i.e., 𝑚𝑃) of the Taylor 

expansion at 𝑃 of an affine model containing 𝑃 of the sextic defining 𝐶′.

➢ 𝑉(ℎ𝑃) is the closed subscheme of ℙ1 defined by the ideal ⟨ℎ𝑃⟩.

• If ℎ𝑃 is quadratic, then

#𝑉 ℎ𝑃 − 1 = ൞

1 if Δ ℎ𝑃
(𝑞−1)/2 = 1

−1 if Δ ℎ𝑃
(𝑞−1)/2 = −1

0 if Δ ℎ𝑃
(𝑞−1)/2 = 0

where Δ(ℎ𝑃) is the discriminant of ℎ𝑃.
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Position analysis of singular points for 𝐶′ over 𝐅3
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• We classify all arrangements of singular points on ℙ2 up to 
automorphisms over 𝐅3 of ℙ2 in each case of
I. Five double points 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5
II. One triple point 𝑃1 and two double points 𝑃2, 𝑃3

• Since 𝐶’ is defined over 𝐅3,
I. The set {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} is defined over 𝐅3.
II. The point 𝑃1 is defined over 𝐅3 and the set {𝑃2, 𝑃3} is defined 

over 𝐅3.

Case I: The patterns of the Frobenius orbits in {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} is 
either of (1,1,1,1,1), (1,1,1,2), (1,2,2), (1,1,3), (2,3), (1,4) and (5): 
for example (1,2,2) means that {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} consists of three 
Frobenius orbits each of which has cardinality 1, 2 and 2
respectively.



Computational results of position analysis for Case I
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• Case (1,1,1,1,1): two positions up to Aut𝐅3(ℙ
2)

𝑃1 = (1: 0: 0), 𝑃2 = (0: 1: 0), 𝑃3 = 0: 0: 1
1. 𝑃4 = (1: 1: 0), 𝑃5 = (0: 1: 1),
2. 𝑃4 = (1: 1: 0), 𝑃5 = (1: 2: 1)

• Case (1,1,1,2): three positions up to Aut𝐅3(ℙ
2)

𝑃1 = (1: 0: 0), 𝑃2 = (0: 1: 0), 𝑃3 = 0: 0: 1
1. 𝑃4 = (1: 𝜁5: 𝜁7), 𝑃5 = 𝑃4

𝜎 , where 𝜁 is a primitive element in 𝐅9
2. 𝑃4 = (1: 𝜁7: 1), 𝑃5 = 𝑃4

𝜎 ,
3. 𝑃4 = (1: 𝜁2: 𝜁2), 𝑃5 = 𝑃4

𝜎 with Frobenius 𝜎.

• Case (1,2,2): five positions (omit)
• Case (1,1,3): four positions (omit)
• Case (2,3): three positions (omit)
• Case (1,4): five positions (omit)
• Case (5): two positions (omit)



Computational results of position analysis for Case II
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• Case (1,1): unique position up to Aut𝐅3(ℙ
2)

𝑃1 = (0: 0: 1), 𝑃2 = (1: 0: 0), 𝑃3 = 0: 1: 0

• Case (2): unique position up Aut𝐅3(ℙ
2)

𝑃1 = (0: 0: 1), 𝑃2 = (1: 𝜁: 0), 𝑃3 = 1: 𝜁3: 0

➢ For each position in Cases I and II, we executed our 
algorithm over MAGMA to enumerate genus-5 generic 
curves over 𝐅3 with many 𝐅9-rational points. 
Computational results are described in the next slides.



Computational results (1/2)

 Executing our algorithm over MAGMA, we have the following:

➢ Note: The maximal number of #𝐶(𝐅9) of curves of genus 5 over 𝐅9 is unknown, 
but is known to belong between 32 and 35 (cf. manypoints.org).

➢While a curve with the Weil polynomial (1) (resp. (4)) was found by Fischer (resp. 
Ramos-Ramos), our curves with (2) and (3) are new examples with #𝐶 𝐅9 = 32.

Theorem The maximal number of #𝐶(𝐅9) of genus-5 generic curves 𝐶 over 
𝐅3 is 32. Moreover, there are precisely four 𝐅9-isogeny classes of Jacobian 
varieties of genus-5 generic curves 𝐶 over 𝐅3 with 32 𝐅9-rational points, 
whose Weil polynomials are

(1) 𝑡2 + 2𝑡 + 9 𝑡2 + 5𝑡 + 9
4

(2) 𝑡 + 3 2 𝑡4 + 8𝑡3 + 32𝑡2 + 72𝑡 + 81
2

(3) 𝑡 + 3 4 𝑡2 + 2𝑡 + 9 𝑡2 + 4𝑡 + 9
2

(4) 𝑡 + 3 6 𝑡2 + 2𝑡 + 9
2



Computational results (2/2)

 Some examples (𝜁: a primitive element of 𝐅9)
•Case (1,1,1,2) with linearly independent 𝑃1, 𝑃2, 𝑃3 where 𝑃4 = (1: 𝜁5: 𝜁7).

The sextic

has 32 𝐅9-rational points with Weil polynomial

𝑡 + 3 4 𝑡2 + 2𝑡 + 9 𝑡2 + 4𝑡 + 9
2

.

•Case (1,2,2) with 𝑃2 = (1: 2: 𝜁5) and 𝑃4 = (1: 𝜁2: 𝜁7).
The sextic

has 32 𝐅9-rational points with Weil polynomial

𝑡 + 3 2 𝑡4 + 8𝑡3 + 32𝑡2 + 72𝑡 + 81
2

.
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Summary and open problems

 In this work, we presented the following:
•Parametrization of the space of genus-5 generic curves
➢ A plane sextic model with mild singularities

➢ The number of parameters is just(!) the moduli dimension (= 12)

•Algorithm to enumerate genus-5 generic curves with many rational points

•Enumeration of such curves over 𝐅3
➢We found new examples which are not listed in manypoints.org

 Future works
•Parameterization of the space of curves with more complex singularities.

•Present methods to compute invariants of genus-5 generic curves.
➢ How do we test whether two such curves are isomorphic or not?

• Improve the efficiency of the proposed algorithm.


