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Formal Puiseux series

K ... �eld of characteristic zero

K [[x ]] ... formal power series

K ((x)) = K [[x ]][x−1]

K 〈〈x〉〉 =
⋃

n∈N∗ K ((x1/n)) ... �eld of formal Puiseux series
(expanded around zero)

y(x) ∈ K 〈〈x〉〉 and Q(x , y) ∈ K [x , y ] \ K [x ] such that
Q(x , y(x)) = 0 ... algebraic Puiseux series

Let ỹ ∈ K ((x1/n)) such that there is no m | n and ỹ ∈ K ((x1/m)).
Then n is called the rami�cation number of ỹ .
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Systems of Dimension One

Let
K{y1, . . . , yn} = K [y1, y

′
1, y
′′
1 , . . . , yn, y

′
n, y
′′
n , . . .]

be the ring of di�erential polynomials in the di�erential
indeterminates y1, . . . , yn with coe�cients in the �eld of constants
K .

Let
S = {F1 = 0, . . . ,FM = 0}. (1)

be a �nite set of di�erential polynomials in K{y1, . . . , yn} whose
sum of orders if equal to m. For an algebraically closed �eld
K ⊇ K , viewing (1) as algebraic set

VK(S) = {a ∈ Km+n | F1(a) = · · · = FM(a) = 0},

we assume that VK(S) has (algebraic) dimension one, i.e. it is a
union of space curves and, maybe, points.
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Systems of Dimension One

Given: S ⊂ Q{y1, . . . , yn} of dimension one as in (1).

Goal:

• Analyze the formal Puiseux series solution vectors
(y1(x), . . . , yn(x)) ∈ C〈〈x〉〉n of S.

• Compute the algebraic Puiseux series solution vectors of S.



The following system de�nes a space curve as in (1).

S = {−8y ′3 + 27y = 0, z5 − y3 = 0,−5z4z ′ + 3y2y ′ = 0}.



Simple Systems

By using algebraic and di�erential reduction (here we use the
Thomas decomposition [4]), di�erential systems S ⊂ K{y1, . . . , yn}
can be decomposed into a �nite collection of simple subsystems
(Sk ,Uk) representing a set of equalities

S = {G1 = 0, . . . ,GM = 0} ⊂ K{y1, . . . , yn}

and inequalities

U = {U1 6= 0, . . . ,UN 6= 0} ⊂ K{y1, . . . , yn}.

The simple subsystems have as algebraic equations the same zeros
as the given system. In particular, the decompositions has the same
solutions set, i.e.

SolK̄〈〈x〉〉(S) =
⋃̇

SolK̄〈〈x〉〉(Sk ,Uk).
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Simple Systems

Simple systems have in particular the following properties:

• G1, . . . ,GM ,U1, . . . ,UN have pairwise distinct leading
variables (they are in triangular form);

• G1, . . . ,GM are pairwise di�erentially reduced and U1, . . . ,UN

are reduced with respect to the Gi 's.

System of dimension one S as in (1) can be decomposed into
simple subsystems leading to constant solution components and to
simple subsystems of the form

G1(y1, y
′
1) = 0,

Gs(y1, y
′
1, y2, . . . , ys) = 0, s ∈ {2, . . . , n},

U(y1) 6= 0,

(I)

where the leading variables (w.r.t. the ordering
y1 < y ′1 < · · · < yn < y ′n < · · · ) are lv(G1) = y ′1, lv(Gs) = ys and
U ∈ K [y1] \ {0}.
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First Order Autonomous AODEs

In [1, 2], there are considered �rst order algebraic ordinary
di�erential equations (AODEs) with constant coe�cients, i.e.

F (y , y ′) = 0, (2)

with F ∈ K [y , y ′].

By using local parametrizations of the plane curve VK̄ (F ), the
Puiseux series solutions of F = 0 can be computed. In particular,
existence, uniqueness and convergence (for K ⊆ C) of the solutions
can be ensured and their rami�cation index can be computed.
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First order autonomous AODEs

For algebraic solutions, the description is possible via their minimal
polynomials:

Theorem [Algebraic Solutions]

Let F ∈ K [y , y ′] be irreducible with an algebraic solution
y(x) ∈ K̄ 〈〈x〉〉 \ K̄ . Then all formal Puiseux series solutions of
F = 0 are algebraic over K̄ (x).
Moreover, if Q ∈ K̄ [x , y ] is the minimal polynomial of y(x), then
all non-constant formal Puiseux series solutions are given by
Q(x + c , y), where c ∈ K̄ .
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Results

To conclude, systems of dimension one (1) can essentially be
decomposed into simple systems of the type (I) and Puiseux series
solutions of �rst order autonomous AODEs are convergent.
Combining these two observations leads to the following result.

Theorem [Convergence]

Let K ⊆ C. All components of a formal Puiseux series solution
vector of system (1), expanded around a �nite point or at in�nity,
are convergent.
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Algebraic Solutions

Computations with Puiseux series vectors are an algorithmically
intricate problem. For algebraic series, however, computations
simplify.

For a system of the type (I)
G1(y1, y

′
1) = 0,

Gs(y1, y
′
1, y2, . . . , ys) = 0, s ∈ {2, . . . , n},

U(y1) 6= 0,

and a polynomial relation P1(x , y1) = 0 with P1 ∈ K [x , y1] and
lv(P1) = y1, we can again compute a decomposition into �nitely
many algebraic simple subsystems of the type{

Gs(x , y1, . . . , ys) = 0, s ∈ {1, . . . , n}, (II)

where Gs ∈ K [x , y1, . . . , ys ] with lv(Gs) = ys .
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Algebraic Solutions

Combining this observation with Theorem [Algebraic Solutions] we
observe:

Corollary

Let (S,U) be a simple system of the form (I) such that
G1 ∈ K [y1, y

′
1] is irreducible with an algebraic solution

y1(x) ∈ K̄ 〈〈x〉〉 \ K̄ .

Then all formal Puiseux series solutions of (S,U) are algebraic over
K̄ (x).

The description of the algebraic solutions can be done either as

• algebraic simple subsystems of the form (II), namely
{G1(x , y1) = 0, . . . ,Gn(x , y1, . . . , yn) = 0}; or

• the minimal polynomials {Q1(x , y1) = 0, . . . ,Qn(x , yn) = 0}.
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Algebraic Solutions

By recursively computing the resultant with respect to the biggest
leading variables in

Pi = Res(Gi , {Q1,G1, . . . ,Gi−1}) ∈ K [x , yi ],

the minimal polynomials of the solution components are the
irreducible factors of Pi .

There are two main disadvantages of simplifying algebraic simple
systems to the vector of minimal polynomials

• full factorization has to be performed;

• not every combination of roots has to be a solution of the
given system, i.e.

SolK〈〈x〉〉({G1, . . . ,Gn}) ⊆
⋃

SolK〈〈x〉〉({Q1, . . . ,Qn}).
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Summary

Given S ⊂ Q{y1, . . . , yn} of dimension one as in (1).

1) Compute a Thomas decomposition of S.
2) For every simple subsystem involving no derivatives, there are

only constant solutions. For the simple subsystems (S̃, Ũ) of
the type (I), check whether G1(y1, y

′
1) has an algebraic

solution y1(x) ∈ C〈〈x〉〉.
3) In the a�rmative case, compute a Thomas decomposition of

(S̃ ∪ {Q1}, Ũ) where Q1 is the minimal polynomial of y1(x).

4) The algebraic solutions are then given as algebraic simple
systems (or can be expressed as a vector of minimal
polynomials).



{−8y ′3 + 27y = 0, z5 − y3 = 0,−5z4z ′ + 3y2y ′ = 0} (3)

is already a simple system.

The �rst equation has the algebraic
solutions y1(x) = x3/2, y2(x) = −x3/2 implicitly de�ned by

Q1(x , y) = y2 − x3.

The Thomas decomposition �nds the algebraic simply subsystem

{Q1(x , y) = y2 − x3, G2(x , y , z) = z5 − x3 y}. (4)

The solutions of (3) and (4) are the same: Let
z1(x) = ζ x9/10, z2(x) = −ζ x9/10 with ζ5 = 1. Then (yi (x), zi (x))
is a solution (but neither (y1(x), z2(x)) nor (y2(x), z1(x))).
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The algebraic simple system (4),

{Q1(x , y) = y2 − x3, G2(x , y , z) = z5 − x3 y},

leads to the vector of minimal polynomials

{Q1(x , y) = y2 − x3, Q2(x , z) = z10 − x9}. (5)

The system (5), however, has (y1(x), z2(x)) and (y2(x), z1(x)) as
solutions.
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