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The problem

Geometric formulation
Among the zero-dimensional schemes Z apolar to a given degree-d form F , is it
true that those of minimal degree are d-regular?

Algebraic formulation
Does the Hilbert function of a zero-dimensional ideal I, which is apolar to a given
degree-d form F , stabilize in degree d?

D

codim ID

deg Z(I)

d
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Apolarity

Apolarity

Setting
k = k, char(k) = 0, S = k[x0, . . . , xn] =

⊕
d≥0 Sd .

Apolar ideal
The apolar ideal to F ∈ Sd is

F⊥ = {H ∈ S | H(δ)(F ) = 0}

Example
In k[X ,Y ,Z ] we have

(X 3 + X 2Y )⊥ = 〈X 3 − 3X 2Y ,Y 2,Z 〉.
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Apolarity

Apolarity

Apolar schemes
A zero-dimensional scheme Z is said to be apolar to F if

I(Z ) ⊆ F⊥.

Cactus schemes
The cactus rank of F is the minimum degree of an apolar scheme of F . We call
cactus scheme a scheme apolar to F that computes its cactus rank.

Example
The cactus rank of X 3 + X 2Y is 2, and a cactus scheme is defined by the ideal

〈Y 2,Z 〉 ( (X 3 + X 2Y )⊥.
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GADs and associated schemes

Generalized Additive Decomposition

Generalized additive decomposition (GAD)
Let F ∈ Sd and let L1, . . . , Ls ∈ S1 be different linear forms. A generalized
additive decomposition (GAD) of F supported at (L1, . . . , Ls) is an expression

F =
s∑

i=1
Ld−ki

i Gi , where 0 ≤ ki ≤ d , for all i ∈ {1, . . . , s},

where Li does not divide Gi , for each i ∈ {1, . . . , s}.
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GADs and associated schemes

Generalized Additive Decomposition

Example
Let us indicate the supports with the blue color.

GAD
X 3 + X 2Y = (X )3 · 1 + (Y ) · X 2 X

= (X )3 · 1 + (X )2 · Y ×
= (X )2 · (X + Y ) X

= (X ) · (X 2 + XY ) ×
= (X − Y )0 · (X 3 + X 2Y ) X

= (X + Z )0 · (X 3 + X 2Y ) X
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GADs and associated schemes

Natural scheme apolar to F at L

We associate a 0-dimensional scheme to a GAD [1, 2]:

Natural apolar scheme
Given a linear form L ∈ S1, we denote the de-homogenization of F with respect to
L by fL. The affine natural scheme apolar to F at L is defined by

Z a
F ,L = V (f ⊥L ),

and its homogenization ZF ,L with respect to L is called the natural scheme
apolar to F at L.

Fact [2, Corollary 4]
ZF ,L is apolar to F .
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GADs and associated schemes

Scheme evincing a GAD

Scheme evincing a GAD
We say that the scheme

Z = Z1 ∪ . . . ∪ Zs , with Zi = ZLd−ki
i Gi ,Li

evinces the GAD

F =
s∑

i=1
Ld−ki

i Gi .

The size of the GAD is
s∑

i=1
deg(Zi).
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GADs and associated schemes

Scheme evincing a GAD

Example
Let us consider the (valid) GADs of X 3 + X 2Y :

i) (X )3 · 1 + (Y ) · X 2 ii) (X )2 · (X + Y )
iii) (X − Y )0 · (X 3 + X 2Y ) iv) (X + Z )0 · (X 3 + X 2Y )

The schemes evincing them are

Size Reg
i) ZX 3,X ∪ ZX 2Y ,Y = V (〈Y ,Z 〉 ∩ 〈X 3,Z 〉) = V (〈X 3Y ,Z 〉) 4 3
ii) ZX 2(X+Y ),X = V (〈Y 2,Z 〉) 2 1
iii) ZX 3+X 2Y ,X−Y = V (〈(X + Y )4,Z 〉 4 3
iv) ZX 3+X 2Y ,X+Z = V (〈(X − Z )2(X − 3Y − Z ),Y 2〉 6 3
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Regularity theorem

Regularity of schemes evincing GADs

Theorem
Let F ∈ Sd and Z be a scheme evincing one of its GADs. Then Z is regular in
degree d .

Recall: regularity in degree d
The Hilbert function of I(Z ) stabilizes to

dim(k(X)/I(Z ))d = deg(Z ).
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Regularity theorem

Sketch of the proof

Theorem
Let F ∈ Sd and Z be a scheme evincing one of its GADs. Then Z is regular in
degree d .

Idea of the proof
Local case: ZLd−k Q,L is contained in the k-fat point supported at L.
Merge local cases: inverse systems corresponding to different supports are
linearly independent.
To do it: read their elements as generalized eigenvectors, common to the
same multiplication operators.
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Regularity theorem

Corollaries

By [1, Theorem 3.7], the set of forms of degree d with a GAD of minimal size r
coincides with the set of forms with cactus rank equal to r . Hence

Corollary
For every F ∈ Sd there exists a cactus scheme of F that is regular in degree d .

Example
The natural scheme apolar to X 3 + X 2Y at X

V (〈Y 2,Z 〉)

is a cactus scheme that is regular in degree 1, hence in degree d = 3.
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Consequences

Bases to be tested in apolar decomposition algorithms

In [3, Section 6] we presented an algorithm to recover a GAD of minimal size for
F ∈ Sd , but we needed testing bases of A = k[X]/I of degree up to ∼ r (the
cactus rank).
By Corollary 1, only bases with degree up to d need to be tested.

Example
If we are dealing with a tensor in k[X ,Y ,Z ] of degree d = 4 and rank r = 7, we
do not need to test bases like

[1,Y ,Z ,Y 2,Y 3,Y 4,Y 5]

anymore.
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Consequences

Interpolation polynomials

Let I be a zero-dimensional ideal supported at {Pj}1≤j≤s , namely its primary
decomposition is

I =
⋂

1≤j≤s
Qj ,

√
Qj = mPj .

We can always construct [4, Section 3] special interpolation polynomials
{ui}1≤i≤s such that 

ui(Pj) = δi,j ,

u2
i ≡ ui ∈ k[X]/I,∑s

i=1 ui ≡ 1 ∈ k[X]/I.

By construction, the degree of these ui ’s may be assumed to be lower than the
regularity of I, which in our setting is bounded by d .
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Work in progress

On the regularity of every non-redundant scheme

Non-redundant schemes
A scheme Z apolar to F is called non-redundant if there are no proper
subschemes Z ′ ( Z apolar to F .

Notice: cactus implies non-redundancy.

Claim
Every non-redundant scheme Z apolar to F ∈ Sd is regular in degree d .

Idea of the proof: given I ⊆ F⊥, we produce I ⊆ J ⊆ F⊥ that evinces a GAD of F .
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Work in progress

On the regularity of every non-redundant scheme

An extended example
Let us consider

F = X 3 + 3X 2Y + 3X 2Z + 3XY 2 + 12XYZ + Y 3 + 3Y 2Z ∈ S3,

and

I = 〈Y ,Z 〉3 ∩ 〈X − Y ,Z 〉2

= 〈X 2Y 3 − 2XY 4 + Y 5,XY 2Z − Y 3Z ,YZ 2,Z 3〉.

We have
I ⊆ F⊥.

We want
I ⊆ J ⊆ F⊥ evincing a GAD of F .
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Work in progress

On the regularity of every non-redundant scheme

An extended example
We fill the Hankel matrix HF of F in order to have I ⊆ kerHF :

1 1 1 1 2 0 1 1 0 0
1 1 2 1 1 0 h1 h2 h3 h4

1 2 0 1 0 0 h2 h3 h4 h5

1 1 1 h1 h2 h3 h6 h7 h8 h9

2 1 0 h2 h3 h4 h7 h8 h9 h10

0 0 0 h3 h4 h5 h8 h9 h10 h11

1 h1 h2 h6 h7 h8 h12 h13 h14 h15

1 h2 h3 h7 h8 h9 h13 h14 h15 h16

0 h3 h4 h8 h9 h10 h14 h15 h16 h17

0 h4 h5 h9 h10 h11 h15 h16 h17 h18
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Work in progress

On the regularity of every non-redundant scheme

An extended example
We fill the Hankel matrix HF of F in order to have I ⊆ kerHF :

1 1 1 1 2 0 1 1 0 0
1 1 2 1 1 0 h57+7

8 1 0 0
1 2 0 1 0 0 1 0 0 0
1 1 1 h57+7

8 1 0 h57+3
4 1 0 0

2 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
1 h57+7

8 1 0 1 0 3h57+5
8 1 0 0

1 1 0 1 0 0 1 0 0 h57+3
4

0 0 0 0 0 0 0 0 h57+3
4 0

0 0 0 0 0 0 0 h57+3
4 0 0
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Work in progress

On the regularity of every non-redundant scheme

An extended example
We fill the Hankel matrix HF of F in order to have I ⊆ kerHF : h57 = 1

HG =



1 1 1 1 2 0 1 1 0 0
1 1 2 1 1 0 1 1 0 0
1 2 0 1 0 0 1 0 0 0
1 1 1 1 1 0 1 1 0 0
2 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
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Work in progress

On the regularity of every non-redundant scheme

An extended example
The kernel of this matrix is

J ′ = 〈XY 2 − Y 3,Z 2〉 ⊇ I.

V (J ′) evinces a GAD for an extension G of F :

G = 1
120

(
30(X )4YZ + (X + Y )5(X + Y + 6Z )

)
.

We obtain by derivation ∂3
XG = F a GAD of F , which is evinced by a scheme

defined by V (J) for some J ⊇ J ′ (in our example: J = J ′):

V (J) evinces F = 6XYZ + (X + Y )2(X + Y + 3Z ).
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