Computing isogenies between Jacobians of hyperelliptic curves of arbitrary genus via differential equations

Elie Eid Univ. Rennes 1

Effective Methods in Algebraic Geometry

June 7-11 2021

Why do we need to compute isogenies?

Isogeny

An **isogeny** between two abelian varieties is a surjective morphism of abelian varieties of finite kernel.

Applications

- Improve point counting algorithms (e.g. SEA for elliptic curves).
- DLP transfer.
- Isogeny-based cryptography (isogeny graphes).
- Applications in number theory : construction of irreducible polynomials, normal bases extensions, etc..

How to compute isogenies?

Isogeny and differential equations (elliptic curves)

- Introduced by Elkies for elliptic curves (1998).
- Bostan-Morain-Salvy-Schost 08, elliptic curves over fields of large characteristic.
- Lercier-Sirvent 08 and Lairez-Vaccon 16, elliptic curves over finite fields of odd characteristic.
- Caruso-E.-Lercier 20, elliptic curves over fields of characteristic two.

Isogeny and differential equations (hyperelliptic curves)

- Couveignes-Ezome 14, Milio 19 and Kieffer-Page-Robert 20, jacobians of hyperelliptic curves of genus 2 and 3 over fields of large characteristic.
- E. 20, Jacobians of hyperellitpic curves of small genus over fields of odd characteristic. Complexity to compute a rational representation of an $(\ell,...,\ell)$ -isogeny : $\widetilde{O}(g^4\ell)$.

- 1 Isogenies between Jacobians of hyperelliptic curves
 - Hyperelliptic curves and their Jacobians
 - Rational representation of an isogeny
 - ODE associated with a rational representation

2 Solving the ODS

- Newton iteration
- Solving the ODS in small characteristic fields
- Achieving quasi-optimality
- Implementation

Plan

- 1 Isogenies between Jacobians of hyperelliptic curves
 - Hyperelliptic curves and their Jacobians
 - Rational representation of an isogeny
 - ODE associated with a rational representation
- 2 Solving the ODS
 - Newton iteration
 - Solving the ODS in small characteristic fields
 - Achieving quasi-optimality
 - Implementation

- └ Isogenies between Jacobians of hyperelliptic curves
 - Hyperelliptic curves and their Jacobians

Let g be an integer ≥ 2 . Let $H: y^2 = f(x)$ be a hyperelliptic curve of genus g defined over a field k (char(k) $\neq 2$) and J(H) be its Jacobian.

We assume that $\deg(f) = 2g + 1$ and let P_{∞} be the unique point at infinity of H.

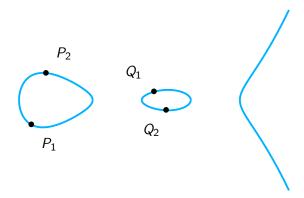
We represent an element [D] of J(H) as a list of g points in H:

- There exists a unique $r \le g$ such that $[D] = [(P_1 + ... + P_r) r \cdot P_{\infty}].$
- [D] is uniquely represented by the list $\{P_1,...,P_r,P_\infty,...,P_\infty\}$.

Remark: If D is k-rational, then the P_i can be defined over an extension of k of degree O(g).

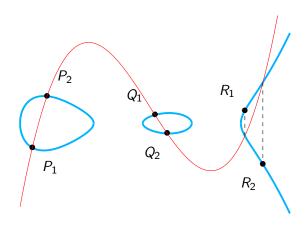
- Isogenies between Jacobians of hyperelliptic curves
 - Hyperelliptic curves and their Jacobians

Example: g=2



- Isogenies between Jacobians of hyperelliptic curves
 - Hyperelliptic curves and their Jacobians

Example: g=2



$${P_1, P_2} + {Q_1, Q_2} = {R_1, R_2}.$$

Group law in practice: the Mumford representation

A "generic element" $\{(x_1,y_1),...,(x_g,y_g)\}$ in the Jacobian is represented by a pair of polynomials (U(X),V(X)) such that

$$U(X) = X^g + \sigma_1 X^{g-1} + \dots + \sigma_g = \prod_{i=1}^g (X - x_i)$$

and $V(X) = \rho_1 X^{g-1} + \dots + \rho_g$ is the interpolating polynomial of the set $\{(x_1, y_1), \dots, (x_g, y_g)\}$.

We represent a generic element in J(H) by the 2g-tuple $(\sigma_1, \dots, \sigma_g, \rho_1, \dots, \rho_g)$.

[└] Isogenies between Jacobians of hyperelliptic curves

Hyperelliptic curves and their Jacobians

- └ Isogenies between Jacobians of hyperelliptic curves
 - Rational representation of an isogeny

Let $H_1: v^2 = f_1(u)$ and $H_2: y^2 = f_2(x)$ two hyperelliptic curves of genus g over a field k (char(k) \neq 2).

We assume that there exists an isogeny $I:J(H_1)\to J(H_2)$. Let $j_{P_\infty}:H_1\to J(H_1)$ be the Jacobi morphism with origin P_∞ . $I\circ j_{P_\infty}$ induces a morphism I_{P_∞} defined as follow

$$I_{P_{\infty}}: H_{1} \longrightarrow J(H_{2})$$

$$Q = (u, v) \mapsto I([Q - P_{\infty}])$$

$$= (\sigma_{1}(u, v), \cdots, \sigma_{g}(u, v), \rho_{1}(u, v), \cdots, \rho_{g}(u, v))$$

It follows that $I_{P_{\infty}}$ can be represented by the 2g rational functions $\sigma_1(u,v),\cdots,\sigma_g(u,v),\rho_1(u,v),\cdots,\rho_g(u,v)$ on C_1 .

Rational representation

We say that $(\sigma_1, \dots, \sigma_g, \rho_1, \dots, \rho_g)$ is a **rational representation** of I.

└ Isogenies between Jacobians of hyperelliptic curves

Rational representation of an isogeny

The case of an $(\ell, ..., \ell)$ -isogeny

We assume that I is an $(\ell,...,\ell)$ -isogeny. Let $(\sigma_1,...,\sigma_g,\rho_1,...,\rho_g)$.

Proposition (bounding the degrees)

The degrees of the functions $\sigma_1,...,\sigma_g$ on C_1 are bounded by $2g\ell$. The degrees of the functions $\rho_1,...,\rho_g$ on C_1 are bounded by $3g\ell$.

Remark: One can write $\sigma_i = A_i(u)/B_i(u)$ and $\rho_i = v \cdot C_i(u)/D_i(u)$. A_i , B_i , C_i and D_i are polynomials of degrees bounded by $g\ell$, $g\ell$, $\frac{3}{2}g\ell$ and $\frac{3}{2}g\ell$ respectively.

LODE associated with a rational representation

Action on spaces of holomorphic differentials

The action of the morphism I_P on the spaces $H^0(H_2^{(g)},\Omega^1_{H_2^{(g)}})$ and $H^0(H_1,\Omega^1_{H_1})$ gives a linear map :

$$I_P^*: H^0(H_2^{(g)}, \Omega^1_{H_2^{(g)}}) \longrightarrow H^0(H_1, \Omega^1_{H_1})$$

We chose the following two bases of $H^0(H_1,\Omega^1_{H_1})$ and $H^0(H_2^{(g)},\Omega^1_{H_2^{(g)}})$ resp. :

$$B_1 = \left\{ u^i \frac{du}{v} \, ; i \in \{0, \dots, g-1\} \right\}$$

et

$$B_2 = \left\{ \sum_{i=1}^g x_j^i \frac{dx_j}{y_i}; i \in \{0, ..., g-1\} \right\}.$$

- Isogenies between Jacobians of hyperelliptic curves
 - ODE associated with a rational representation

Let $(m_{ij})_{ij}$ be the matrix of the linear map I_P^* in (B_2, B_1) , this gives the following ODS

$$\begin{cases} \frac{dx_1}{y_1} + \cdots + \frac{dx_g}{y_g} &= (m_{11} + \dots + m_{1g} \cdot u^{g-1}) \frac{du}{v} \\ \\ \frac{x_1 \cdot dx_1}{y_1} + \cdots + \frac{x_g \cdot dx_g}{y_g} &= (m_{21} + \dots + m_{2g} \cdot u^{g-1}) \frac{du}{v} \\ \\ \vdots &\vdots &\vdots \\ \frac{x_1^{g-1} \cdot dx_1}{y_1} + \cdots + \frac{x_g^{g-1} \cdot dx_g}{y_g} &= (m_{g1} + \dots + m_{gg} \cdot u^{g-1}) \frac{du}{v} \\ \\ y_1^2 = f_2(x_1), &\cdots &, y_g^2 = f_2(x_g). \end{cases}$$

- Isogenies between Jacobians of hyperelliptic curves
 - ODE associated with a rational representation

Let Q be a point on H_1 and $I_P(Q) = \{P_1, ..., P_g\}$. We assume that $I_P(Q)$ is generic.

Around the point Q, the ODS can be written of the form

$$\begin{cases} H(x_1(t),...,x_g(t)) \cdot X'(t) = G(t) \\ x_1(0),...,x_g(0) = x_{P_1},...,x_{P_g}. \end{cases}$$

The matrix $H(x_1,...,x_g(t))$ is given by

$$H(x_1,\dots,x_g) = \begin{pmatrix} x_1'(t)/y_1(t) & \dots & \dots & x_g'(t)/y_g(t) \\ x_1(t)x_1'(t)/y_1(t) & \dots & \dots & x_g(t)x_g'(t)/y_g(t) \\ \vdots & & & \vdots \\ x_1(t)^{g-1}x_1'(t)/y_1(t) & \dots & \dots & x_g(t)^{g-1}x_g'(t)/y_g(t) \end{pmatrix}$$

Remark: Finding $X(t) \mod t^{2g\ell+1}$ allows to reconstruct the rational representation.

Plan

- 1 Isogenies between Jacobians of hyperelliptic curves
 - Hyperelliptic curves and their Jacobians
 - Rational representation of an isogeny
 - ODE associated with a rational representation
- 2 Solving the ODS
 - Newton iteration
 - Solving the ODS in small characteristic fields
 - Achieving quasi-optimality
 - Implementation

$$\begin{cases} H(X(t)) \cdot X'(t) = G(t) \\ x_1(0), \dots, x_g(0) = x_{P_1}, \dots, x_{P_g}. \end{cases}$$

We use a Newton iteration to solve it :

Proposition

Let $n \ge 0$ be an integer. If $X_n(t)$ is a solution of the ODS modulo t^{n+1} , then

$$X_{2n+1} = X_n + (H(X_n))^{-1} \int (G - H(X_n) \cdot X_n') dt$$

is a solution modulo t^{2n+2} .

Assume that I is defined over a finite field of characteristic p > 0 $(p \neq 2)$.

If $p < 2g\ell$, then the ODS have more than one solution because :

$$\int t^{p-1} dt = ?$$

In order to have a unique solution :

- We lift the ODS : a finite extension \mathbb{Q}_p .
- Solve then reduce modulo p.
- Solving in $\mathbb{Q}_p \Longrightarrow \text{loss of } p\text{-adic precision}$.
 - → An optimal bound of the loss of p-adic precision is already found.

Solving the ODS

Achieving quasi-optimality

Complexity?

$$X_{2n+1} = X_n + (H(X_n))^{-1} \int (G - H(X_n) \cdot X_n') dt$$

The components of vector X_n are defined in L[t] where L is an extension of k of degree at most O(g).

Naive algorithm complexity : $\widetilde{O}(g^4\ell)$ operations in k (quasi-optimal in ℓ but not in g).

How do we achieve quasi-optimality in g?

Goal : $\widetilde{O}(g^2\ell)$ instead of $\widetilde{O}(g^4\ell)$ operations in k.

First idea : The matrix $H(x_1,...,x_g)$,

$$H(x_1,...,x_g) = \begin{pmatrix} 1/y_1(t) & \dots & \dots & 1/y_g(t) \\ x_1(t)/y_1(t) & \dots & \dots & x_g(t)/y_g(t) \\ \vdots & & & \vdots \\ x_1(t)^{g-1}/y_1(t) & \dots & \dots & x_g(t)^{g-1}/y_g(t) \end{pmatrix}$$

is a structured matrix.

 \to Complexity of the Newton iteration : $\widetilde{O}(g^3\ell)$ instead of $\widetilde{O}(g^4\ell)$ operations in k.

Second idea: We rewrite the Newton iteration to compute the polynomial $U(X,t) = \prod_{i=1}^g (X-x_i(t)) \in k[t][x]$ instead of computing $(x_1,\ldots,x_g) \in L[t]$.

 \to Complexity of the Newton iteration : $\widetilde{O}(g^2\ell)$ instead of $\widetilde{O}(g^3\ell)$ operations in k.

Overall algorithm

$$X_{2n+1} = X_n + (H(X_n))^{-1} \int (G - H(X_n) \cdot X_n') dt.$$

Step 1: Compute
$$H(X_n) \cdot X'_n$$
 and $H(X_n) \cdot X_n \ \widetilde{O}(gn)$

Step 2: Compute
$$F_n = H(X_n) \cdot X_n + \int (G - H(X_n) \cdot X_n') \widetilde{O}(gn)$$

Step 3: Solve
$$H(X_n) \cdot X_{2n+1} = F_n$$
 (Shoup + Kedlaya-Umans) $\widetilde{O}(gn)$

Difficult to implement the quasi-optimal algorithm in an optimized way since it uses the Kedlaya-Umans algorithm.

$$g = 2, 5, 7$$

