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Computing isogenies between Jacobians of hyperelliptic curves of arbitrary genus

Why do we need to compute isogenies ?

Isogeny

An isogeny between two abelian varieties is a surjective morphism
of abelian varieties of finite kernel.

Applications

Improve point counting algorithms (e.g. SEA for elliptic
curves).
DLP transfer.
Isogeny-based cryptography (isogeny graphes).
Applications in number theory : construction of irreducible
polynomials, normal bases extensions, etc..
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How to compute isogenies ?

Isogeny and differential equations (elliptic curves)

Introduced by Elkies for elliptic curves (1998).
Bostan-Morain-Salvy-Schost 08, elliptic curves over fields of
large characteristic.
Lercier-Sirvent 08 and Lairez-Vaccon 16, elliptic curves over
finite fields of odd characteristic.
Caruso-E.-Lercier 20, elliptic curves over fields of characteristic
two.
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Isogeny and differential equations (hyperelliptic curves)

Couveignes-Ezome 14, Milio 19 and Kieffer-Page-Robert 20,
jacobians of hyperelliptic curves of genus 2 and 3 over fields of
large characteristic.
E. 20, Jacobians of hyperellitpic curves of small genus over
fields of odd characteristic. Complexity to compute a rational
representation of an (`, . . . ,`)-isogeny : Õ(g4`).
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Isogenies between Jacobians of hyperelliptic curves

Hyperelliptic curves and their Jacobians

Let g be an integer ≥ 2. Let H : y2 = f (x) be a hyperelliptic curve
of genus g defined over a field k (char(k) 6= 2) and J(H) be its
Jacobian.

We assume that deg(f )= 2g +1 and let P∞ be the unique point at
infinity of H.

We represent an element [D] of J(H) as a list of g points in H :
There exists a unique r ≤ g such that
[D]= [(P1+ . . .+Pr )− r ·P∞].
[D] is uniquely represented by the list {P1, . . . ,Pr ,P∞, . . . ,P∞}.

Remark : If D is k-rational, then the Pi can be defined over an
extension of k of degree O(g).
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Isogenies between Jacobians of hyperelliptic curves

Hyperelliptic curves and their Jacobians

Example : g=2

•
P1

•
P2

•
Q1

•
Q2

•

•
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Isogenies between Jacobians of hyperelliptic curves

Hyperelliptic curves and their Jacobians

Example : g=2

•
P1

•
P2

•
Q1

•
Q2

•
R1

•
R2

{P1,P2}+ {Q1,Q2} = {R1,R2} .
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Isogenies between Jacobians of hyperelliptic curves

Hyperelliptic curves and their Jacobians

Group law in practice : the Mumford representation

A "generic element"
{
(x1,y1), . . . ,(xg ,yg )

}
in the Jacobian is

represented by a pair of polynomials (U(X ),V (X )) such that

U(X )=X g +σ1X
g−1+·· ·+σg =

g∏
i=1

(X −xi )

and V (X )= ρ1X
g−1+·· ·+ρg is the interpolating polynomial of the

set
{
(x1,y1), . . . ,(xg ,yg )

}
.

We represent a generic element in J(H) by the 2g -tuple
(σ1, · · · ,σg ,ρ1, · · · ,ρg ).
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Isogenies between Jacobians of hyperelliptic curves

Rational representation of an isogeny

Let H1 : v
2 = f1(u) and H2 : y

2 = f2(x) two hyperelliptic curves of
genus g over a field k (char(k) 6= 2).

We assume that there exists an isogeny I : J(H1)! J(H2).
Let jP∞ :H1! J(H1) be the Jacobi morphism with origin P∞.
I ◦ jP∞ induces a morphism IP∞ defined as follow

IP∞ : H1 −! J(H2)

Q = (u,v) 7! I ([Q−P∞])

= (σ1(u,v), · · · ,σg (u,v),ρ1(u,v), · · · ,ρg (u,v))

It follows that IP∞ can be represented by the 2g rational functions
σ1(u,v), · · · ,σg (u,v),ρ1(u,v), · · · ,ρg (u,v) on C1.

Rational representation

We say that (σ1, · · · ,σg ,ρ1, · · · ,ρg ) is a rational representation of
I .
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Isogenies between Jacobians of hyperelliptic curves

Rational representation of an isogeny

The case of an (`, . . . ,`)-isogeny

We assume that I is an (`, . . . ,`)-isogeny. Let (σ1, . . . ,σg ,ρ1, . . . ,ρg ).

Proposition (bounding the degrees)

The degrees of the functions σ1, . . . ,σg on C1 are bounded by 2g`.
The degrees of the functions ρ1, . . . ,ρg on C1 are bounded by 3g`.

Remark : One can write σi =Ai (u)/Bi (u) and
ρi = v ·Ci (u)/Di (u). Ai , Bi , Ci and Di are polynomials of degrees

bounded by g`, g`,
3
2
g` and

3
2
g` respectively.
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Isogenies between Jacobians of hyperelliptic curves

ODE associated with a rational representation

Action on spaces of holomorphic differentials

The action of the morphism IP on the spaces H0(H
(g)
2 ,Ω1

H
(g)
2

) and

H0(H1,Ω1
H1
) gives a linear map :

I ∗P : H0(H
(g)
2 ,Ω1

H
(g)
2

)−!H0(H1,Ω1
H1
)

We chose the following two bases of H0(H1,Ω1
H1
) and

H0(H
(g)
2 ,Ω1

H
(g)
2

) resp. :

B1 =
{
ui
du

v
; i ∈ {0, . . . ,g −1}

}
et

B2 =
{

g∑
j=1

x ij
dxj

yj
; i ∈ {0, . . . ,g −1}

}
.
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Isogenies between Jacobians of hyperelliptic curves

ODE associated with a rational representation

Let (mij)ij be the matrix of the linear map I ∗P in (B2,B1), this gives
the following ODS



dx1
y1

+ ·· · + dxg

yg
= (

m11+ ...+m1g ·ug−1)du
v

x1 ·dx1
y1

+ ·· · + xg ·dxg
yg

= (
m21+ ...+m2g ·ug−1)du

v
...

...
x
g−1
1 ·dx1

y1
+ ·· · +

x
g−1
g ·dxg

yg
= (

mg1+ ...+mgg ·ug−1)du
v

y2
1 = f2(x1), · · · , y2

g = f2(xg ) .
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Isogenies between Jacobians of hyperelliptic curves

ODE associated with a rational representation

Let Q be a point on H1 and IP(Q)= {P1, . . . ,Pg }. We assume that
IP(Q) is generic.
Around the point Q, the ODS can be written of the form{

H(x1(t), . . . ,xg (t)) ·X ′(t)=G (t)

x1(0), . . . ,xg (0)= xP1 , . . . ,xPg
.

The matrix H(x1, . . . ,xg (t)) is given by

H(x1, . . . ,xg )=


x ′1(t)/y1(t) . . . . . . x ′g (t)/yg (t)

x1(t)x
′
1(t)/y1(t) . . . . . . xg (t)x

′
g (t)/yg (t)

...
...

x1(t)
g−1x ′1(t)/y1(t) . . . . . . xg (t)

g−1x ′g (t)/yg (t)



Remark : Finding X (t) mod t2g`+1 allows to reconstruct the
rational representation.
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Solving the ODS

Newton iteration

{
H(X (t)) ·X ′(t)=G (t)

x1(0), . . . ,xg (0)= xP1 , . . . ,xPg
.

We use a Newton iteration to solve it :

Proposition

Let n≥ 0 be an integer. If Xn(t) is a solution of the ODS modulo
tn+1, then

X2n+1 =Xn+ (H (Xn))
−1

∫
(G −H (Xn) ·X ′

n) dt

is a solution modulo t2n+2.
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Solving the ODS

Solving the ODS in small characteristic fields

Assume that I is defined over a finite field of characteristic p > 0
(p 6= 2).
If p < 2g`, then the ODS have more than one solution because :∫

tp−1dt =?

In order to have a unique solution :
We lift the ODS : a finite extension Qp.
Solve then reduce modulo p.
Solving in Qp =⇒ loss of p-adic precision.
! An optimal bound of the loss of p-adic precision is already

found.
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Solving the ODS

Achieving quasi-optimality

Complexity ?

X2n+1 =Xn+ (H (Xn))
−1

∫
(G −H (Xn) ·X ′

n) dt

The components of vector Xn are defined in L�t� where L is an
extension of k of degree at most O(g).

Naive algorithm complexity : Õ(g4`) operations in k
(quasi-optimal in ` but not in g).
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Solving the ODS

Achieving quasi-optimality

How do we achieve quasi-optimality in g ?

Goal : Õ(g2`) instead of Õ(g4`) operations in k .

First idea : The matrix H(x1, . . . ,xg ),

H(x1, . . . ,xg )=


1/y1(t) . . . . . . 1/yg (t)

x1(t)/y1(t) . . . . . . xg (t)/yg (t)

...
...

x1(t)
g−1/y1(t) . . . . . . xg (t)

g−1/yg (t)



is a structured matrix.
! Complexity of the Newton iteration : Õ(g3`) instead of

Õ(g4`) operations in k .
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Solving the ODS

Achieving quasi-optimality

Second idea : We rewrite the Newton iteration to compute the

polynomial U(X ,t)=
g∏
i=1

(X −xi (t)) ∈ k�t�[x ] instead of computing

(x1, . . . ,xg ) ∈ L�t�.
! Complexity of the Newton iteration : Õ(g2`) instead of

Õ(g3`) operations in k .
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Solving the ODS

Achieving quasi-optimality

Overall algorithm

X2n+1 =Xn+ (H (Xn))
−1

∫
(G −H (Xn) ·X ′

n) dt.

Step 1 : Compute H (Xn) ·X ′
n and H (Xn) ·Xn Õ(gn)

Step 2 : Compute Fn =H (Xn) ·Xn+
∫
(G −H (Xn) ·X ′

n) Õ(gn)

Step 3 : Solve H (Xn) ·X2n+1 =Fn (Shoup + Kedlaya-Umans)
Õ(gn)
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Solving the ODS

Implementation

Difficult to implement the quasi-optimal algorithm in an optimized
way since it uses the Kedlaya-Umans algorithm.

g = 2,5,7
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