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Computing isogenies between Jacobians of hyperelliptic curves of arbitrary genus

Why do we need to compute isogenies ?

An isogeny between two abelian varieties is a surjective morphism
of abelian varieties of finite kernel.

Applications

m Improve point counting algorithms (e.g. SEA for elliptic
curves).

m DLP transfer.

m Isogeny-based cryptography (isogeny graphes).
m Applications in number theory : construction of irreducible
polynomials, normal bases extensions, etc..
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How to compute isogenies ?

Isogeny and differential equations (elliptic curves)

m Introduced by Elkies for elliptic curves (1998).

m Bostan-Morain-Salvy-Schost 08, elliptic curves over fields of
large characteristic.

m Lercier-Sirvent 08 and Lairez-Vaccon 16, elliptic curves over
finite fields of odd characteristic.

m Caruso-E.-Lercier 20, elliptic curves over fields of characteristic
two.
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Isogeny and differential equations (hyperelliptic curves)

m Couveignes-Ezome 14, Milio 19 and Kieffer-Page-Robert 20,
jacobians of hyperelliptic curves of genus 2 and 3 over fields of
large characteristic.

m E. 20, Jacobians of hyperellitpic curves of small genus over
fields of odd characteristic. Complexity to compute a rational
representation of an (¢,...,¢)-isogeny : O(g*¢).
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Isogenies between Jacobians of hyperelliptic curves
m Hyperelliptic curves and their Jacobians
m Rational representation of an isogeny
m ODE associated with a rational representation

Solving the ODS
m Newton iteration
m Solving the ODS in small characteristic fields
m Achieving quasi-optimality
m Implementation
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LIsogenies between Jacobians of hyperelliptic curves

Plan

Isogenies between Jacobians of hyperelliptic curves
m Hyperelliptic curves and their Jacobians
m Rational representation of an isogeny
m ODE associated with a rational representation
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LIsogenies between Jacobians of hyperelliptic curves

LHyperelliptic curves and their Jacobians

Let g be an integer =2. Let H : y?> = f(x) be a hyperelliptic curve
of genus g defined over a field k (char(k) #2) and J(H) be its
Jacobian.

We assume that deg(f) =2g +1 and let Py, be the unique point at
infinity of H.

We represent an element [D] of J(H) as a list of g points in H :

m There exists a unique r < g such that
[D]=[(P1+...+ P;)—r-Px).
m [D] is uniquely represented by the list {P1,..., Pr, Peo, ..., Poo}-

Remark : If D is k-rational, then the P; can be defined over an
extension of k of degree O(g).
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‘—Isogenies between Jacobians of hyperelliptic curves

LHyperelliptic curves and their Jacobians

Example : g=2
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‘—Isogenies between Jacobians of hyperelliptic curves

LHyperelliptic curves and their Jacobians

Example : g=2

{Ply P2} + {Qly Q2} = {Rly RZ}-
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LHyperelliptic curves and their Jacobians

Group law in practice : the Mumford representation

A "generic element" {(x1,y1),...,(Xg,Yg)} in the Jacobian is
represented by a pair of polynomials (U(X), V(X)) such that

o

UX)=XE+01XE 4 va,=](X-x)

i=1

and V(X)=p1X&1+---+pg is the interpolating polynomial of the
set {(x1,y1),---» (xg Yg)}-

We represent a generic element in J(H) by the 2g-tuple
(Ulr"';agypl,'“;Pg)-
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LIsogenies between Jacobians of hyperelliptic curves

LRa\ticmal representation of an isogeny

Let Hy:v?=f(u) and Hz:y? = f(x) two hyperelliptic curves of
genus g over a field k (char(k) #2).

We assume that there exists an isogeny / : J(H1) — J(H2).
Let jp_ : Hi — J(H1) be the Jacobi morphism with origin P.
lojp induces a morphism Ip_ defined as follow

Ip, :Hi — J(Ho)
Q=(uv) =~ /([Q_POO])

= (01 V)T (u ), pr (V). g (1, v))

It follows that /p_ can be represented by the 2g rational functions
o1(u,v),-,0g(u,v),p1(u,v), -, pg(u,v) on .

Rational representation

We say that (01,-:+,04,p1,:+,pg) is a rational representation of
l.
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LIsogenies between Jacobians of hyperelliptic curves

L Rational representation of an isogeny

The case of an (¢,...,¢)-isogeny

We assume that / is an (¢,...,¢)-isogeny. Let (01,...,04,01,-..,Pg)-

Proposition (bounding the degrees)

The degrees of the functions o1,...,05 on C; are bounded by 2g¢.
The degrees of the functions py,...,pg on C; are bounded by 3g¢.

Remark : One can write o; = A;(u)/B;(u) and
pi=v-Ci(u)/Di(u). A, Bi, C; and D; are polynomials of degrees

bounded by g¢, g¢, ggf and ggf respectively.
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L ODE associated with a rational representation

Action on spaces of holomorphic differentials

The action of the morphism /p on the spaces HO(Hég),Q}_I(g)) and
2

HO(Hl,Q}_Il) gives a linear map :
« . o H(&) o1 0 1
Iy - HO(HD,01 ) — HO(Hh, 0}
We chose the following two bases of HO(Hl,Q}{l) and
o(H&) 1 :
HP(H, ’QHég)) resp. :
d
Bl Z{Ul—u;iE{O,...,g—l}}
v
et

g dx
BF{ZXJ!—X{; iE{O,...,g—l}}.

j=1" Y
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LIsogenies between Jacobians of hyperelliptic curves

LODE associated with a rational representation

Let (m;;);; be the matrix of the linear map /5 in (B, By), this gives
the following ODS

dx dx du
= + e+ —£ = (mq1 +...+m1g-ug‘1)—
Y1 Yg v
x1 - dx Xg - dx, du
X1 e+ - S = (m21+...+m2g~ug’1)—
Y1 Yg v
Xffl-dxl xg,fl-dxg 1, du
+ o+ = = (mg1t..tmgg-uT)—
Y1 Yg v
2 2
yi =f(x1), ' vg =falxg).
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LIsogenies between Jacobians of hyperelliptic curves

LODE associated with a rational representation

Let Q be a point on H; and Ip(Q) = {P41,..., Pg}. We assume that

Ip(Q) is generic.
Around the point @, the ODS can be written of the form

{ H(xa(t),... xg(£))- X' () = G(¢)

x1(0),...,xg(0) = XPyy e XPy-

The matrix H(x1,...,xg(t)) is given by

xq(t)/y1(t) xg(t)/yg(t)
x1(t)xg(8)/ya(t) o o xg(E)xg(t)/yg(t)
H(x1,..., Xg) = : )
x (DI ()/yi(t) o xg(D)ETIxE()/yg(t)

Remark : Finding X(t) mod t?8/*! allows to reconstruct the
rational representation.
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L Solving the ODS

Plan

Solving the ODS
m Newton iteration
m Solving the ODS in small characteristic fields
m Achieving quasi-optimality
m Implementation
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L Newton iteration

{ H(X(2))-X'(¢) = G(2)
X1(

0),...,xg(0) = xpy, .-, Xp, -

We use a Newton iteration to solve it :

Proposition

Let n=0 be an integer. If X,(t) is a solution of the ODS modulo
t"*1 then

Xoni1=Xp+ (H(X,,))_I[(G —H(X,)-X.) dt

is a solution modulo t27+2,
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LSolving the ODS in small characteristic fields

Assume that [ is defined over a finite field of characteristic p>0

(p#2).
If p<2g?, then the ODS have more than one solution because :

ftpfldt =7?

In order to have a unique solution :
m We lift the ODS : a finite extension Qp.
m Solve then reduce modulo p.
m Solving in Qp = loss of p-adic precision.

— An optimal bound of the loss of p-adic precision is already
found.
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LAchieving quasi-optimality

Complexity 7

Xons1=Xp+ (H(X,,))_I[(G —H(X,)-X}) dt

The components of vector X,, are defined in L[t] where L is an
extension of k of degree at most O(g).

Naive algorithm complexity : O(g*¢) operations in k
(quasi-optimal in ¢ but not in g).
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L Solving the ODS
LAchieving quasi-optimality

How do we achieve quasi-optimality in g7

Goal : O(g?¢) instead of O(g*¢) operations in k.

First idea : The matrix H(xy,...,xg),

Uyi(t) o e 1/yg(0)
x(O)/ya(t) o xg(8)/yg(t)
H(Xl ..... Xg = . .
X (OF () o xg(D)E/yg(2)

is a structured matrix.

— Complexity of the Newton iteration : O(g3¢) instead of

O(g*?) operations in k.
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L Solving the ODS

LAchieving quasi-optimality

Second idea : We rewrite the Newton iteration to compute the
g
polynomial U(X,t) = II(X —x;(t)) € kltl[x] instead of computing

i=1
(x1,...,Xg) € L[t].

— Complexity of the Newton iteration : O(g2¢) instead of
O(g3¢) operations in k.
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L Solving the ODS
LAchieving quasi-optimality

Overall algorithm

Xoni1=Xp+ (H(Xn))‘lf(c —H(X,)-X!) dt.

Step 1 : Compute H(X,)- X, and H(X,)- X, O(gn)

Step 2 : Compute F,=H(Xy) - Xn+ [(G—H(X,)-X]) O(gn)

Step 3 : Solve H(Xp) - Xan+1 = Fn (Shoup + Kedlaya-Umans)

O(gn)
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L Implementation

Difficult to implement the quasi-optimal algorithm in an optimized
way since it uses the Kedlaya-Umans algorithm.
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