Dual certificates and cones of certificates Lower bounding polynomials using dual certificates
000000000 00000000

Dual certificates and efficient rational sum-of-squares
decompositions for polynomial optimization over
compact sets

Maria Macaulay (Joint with David Papp)
North Carolina State University

June 7-11, 2021

NC STATE UNIVERSITY

Supported in part by NSF DMS-1719828 and NSF DMS-1847865.

1/19



Dual certificates and cones of certificates Lower bounding polynomials using dual certificates
000000000 00000000

Outline

@ Dual certificates and cones of certificates

@® Lower bounding polynomials using dual certificates
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Nonnegativity certificates

® A nonnegativity certificate is a representation of a polynomial p that makes the
nonnegativity of p on a semialgebraic set S apparent.
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Nonnegativity certificates

® A nonnegativity certificate is a representation of a polynomial p that makes the
nonnegativity of p on a semialgebraic set S apparent.

® Example: Weighted sums of squares

® Let S be a semialgebraic set
S={xeRY|g(x)>0, foralli=1,...,m}

with each g; a polynomial

® Denote the cone of weighted sums-of-squares (WSOS) polynomials by ¥, so
m
> = {Zg;s; | si a sum of squares polynomial, deg(s;) < 2d;,i =1,..., m}
i=1

® Any element of ¥ is nonnegative on S
® |f pis WSOS, then p is nonnegative on S

® \WSOS representation is a nonnegativity certificate for p.
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Notation and background

Proposition

There exists a linear map A, with A* its adjoint, such that s € ¥ if and only if
there exists S satisfying S = 0 satisfying p = A*(S). The dual cone of X is
given by X* = {x | A(x) = 0}.

Y. Nesterov, "Squared functional systems and optimization problems*
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Notation and background

Proposition

There exists a linear map A, with A* its adjoint, such that s € ¥ if and only if
there exists S satisfying S = 0 satisfying p = A*(S). The dual cone of X is
given by X* = {x | A(x) = 0}.

® Example: univariate case, sums of squares over the real line: A maps x to
its Hankel matrix.

® So checking if a polynomial is WSOS amounts to finding a positive
semidefinite matrix.

® The matrix S can be taken to be a nonnegativity certificate.

® A notation will be used throughout.

Y. Nesterov, "Squared functional systems and optimization problems*
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Dual certificates

® Let g(+), H(-) denote the gradient and the Hessian (respectively) of the function

F(x) = — In(det(A(x))) (1)

Theorem (M. and Papp)
Let x € (X*)° be arbitrary. Then the matrix S = S(x, p) defined by

S(x,p) = A() A (H(X)'p) AX) !
satisfies A*(S) = p.

® Using theorem from previous slide, if S 3= 0, then p € X.
® We say x is a dual certificate for p € ¥ if H(x) 'p € *.
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Gradient certificates

Proposition
For every p € X°, there exists a unique x € (X*)° satisfying —g(x) = p.

e If —g(x) = p, then S(x,p) > 0.
® Therefore every p € £° has a dual certificate
® We call x the gradient certificate of p if x is a dual certificate for p and

—g(x) =p.

Y. Nesterov, "Squared functional systems and optimization problems*
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Dual certificates - properties

® Can use x to get WSOS decomposition

® x dual certificate for p = S(x,p) = 0 and A*(S) = p
® Then can factor S(x,p) (Cholesky, LDL™)
® But x itself is already a nonnegativity certificate for p.
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Dual certificates - properties

® Can use x to get WSOS decomposition

® x dual certificate for p = S(x,p) = 0 and A*(S) = p
® Then can factor S(x,p) (Cholesky, LDL™)
® But x itself is already a nonnegativity certificate for p.

® Cones of certificates: denote by
ef *\0 — *
C(p) = {x € (Z)°|HX) 'pex’)

P(x) = {p € T|H(x) 'pex’}
Theorem (M. and Papp)

The cone C(p) (resp. P(x)) is a full-dimensional cone whenever p (resp. x) is in the
interior of X (resp. X*).

7/19



Dual certificates and cones of certificates
0O0000e000

Primal vs dual certificates

® Primal certificate: an explicit WSOS decomposition of a polynomial

® A rewriting of the polynomial
® A single WSOS decomposition certifies a single polynomial
® Primal certificate: a matrix S with A*(S) = p for a polynomial p

® Still, a single matrix certifies a single polynomial

® Dual certificate: a vector from the dual cone which certifies a polynomial

to be WSOS
® Distinct from the polynomials they certify

A single dual certificate certifies a full-dimensional cone of polynomials

® A single polynomial is certified by a full-dimensional cone of dual
certificates

® A primal certificate (WSOS decomposition, S matrix) can be constructed
from the dual certificate

olynomials using dual certificates
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Example

Consider the univariate polynomial p given by p(z) =1 — z + z° + z° — 2*.

® Show p nonnegative on interval [—1,1]: want to show coefficient vector
p=(1,-1,1,1,—1) is a member of 3 ,,, with weights g(z) = (1,1 — z°) and
degree vector d = (2,1).

® A:R® — S® @ S? operator is given by
X0 X1 X2
Xo— X2 X1—X3
/\(Xo,X1,X2,X3,X4) = X1 X2 X3 ( > .
X1 — X3 X2 — Xa
X2 X3 X4
® The adjoint operator is given by
N*(S' @ S?) = (Sgo + Soos 2S01+2551, 2502 + St — S + St
251, — 2501, 52 — Sh)-
® Consider x = (5,0,5/2,0,15/8)

® Claim: x certifies that p is nonnegative
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Example continued

® By a previous theorem, it is sufficient to verify that

144 —20 72
%/\ (H(x)_lp) =[-20 72 -5|@ (j125 _2:;5> = 0.
72 -5 49

® Can also compute rational matrices S; and S» to certify p by plugging our
certificate into the formula for the S(x, p) matrix, obtaining

S L 2%5 I: _:6 and S L ( 18 _15>
1= ——= — 2 = — .
0\ % 5 6 40 \-15 92

® Factor these using the LDLT form of Cholesky decomposition:

1 (71322 5z 1>2 371( 2022)2 3937z

A= \"T11 "2 *g80 %7 371 7420

N[ 9 5z\% 15972
+(1 Z)(zo(l 6)+ 80 |-

+
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Easier-to-check sufficient conditions

® Rather than checking A(H(x)'p) = 0, evaluating formula below is sufficient:

Lemma (M. and Papp)

Let A(-) € R¥*¥. Suppose p € £° and let x € (X*)° be any vector that satisfies the
inequality

p’ (xxT —(v— l)H(x)_l) p>0.

Then x € C(p), equivalently, p € P(x).

polynomials using dual certificates
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Easier-to-check sufficient conditions

® Rather than checking A(H(x)'p) = 0, evaluating formula below is sufficient:

Lemma (M. and Papp)

Let A(-) € R¥*¥. Suppose p € £° and let x € (X*)° be any vector that satisfies the
inequality
p’ (xxT —(v— 1)H(x)71) p>0.

Then x € C(p), equivalently, p € P(x).
® Or check if the certificate is close enough to the gradient certificate:

Corollary

Let x,y € X" and p € X, with —g(y) = p. Then if [|[H(x)"/?(x — y)|| < %, x certifies
p.

* If —g(x) =p,
® x is “central” in C(p) (result from interior-point method theory)
® pis “central” in P(x)
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Algorithm: best lower bound from all certificates

12/19



Dual certificates and cones of certificates Lower bounding polynomials using dual certificates
000000000 0000000

Algorithm: best lower bound from all certificates

® From a previous theorem, we know that both C(p) and P(x) are
full-dimensional, so

® We can perturb p in any direction and still certify it with x, and
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Algorithm: best lower bound from all certificates

® From a previous theorem, we know that both C(p) and P(x) are
full-dimensional, so

® We can perturb p in any direction and still certify it with x, and
® We can perturb x in any direction and still certify p.
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Algorithm: best lower bound from all certificates

® From a previous theorem, we know that both C(p) and P(x) are
full-dimensional, so

® We can perturb p in any direction and still certify it with x, and
® We can perturb x in any direction and still certify p.

® Do this iteratively to find lower bound for p:
® Perturb p to p — ¢, with p — c still certified by x
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Algorithm: best lower bound from all certificates

® From a previous theorem, we know that both C(p) and P(x) are
full-dimensional, so
® We can perturb p in any direction and still certify it with x, and
® We can perturb x in any direction and still certify p.
® Do this iteratively to find lower bound for p:
® Perturb p to p — ¢, with p — c still certified by x
® Perturb x to get close to gradient certificate of p — ¢

® Result: find (or get close to) best possible upper bound ¢ such that p — ¢
is WSOS.

12/19



Jtes and cones of certificates Lower bounding polynomials using dual certificates
0000000

Algorithm: best lower bound from all certificates

® From a previous theorem, we know that both C(p) and P(x) are
full-dimensional, so
® We can perturb p in any direction and still certify it with x, and
® We can perturb x in any direction and still certify p.
® Do this iteratively to find lower bound for p:
® Perturb p to p — ¢, with p — c still certified by x
® Perturb x to get close to gradient certificate of p — ¢
® Result: find (or get close to) best possible upper bound ¢ such that p — ¢
is WSOS.
® Algorithm given in later slide
® Guaranteed to converge linearly to optimal bound
® Requires only one Hessian computation per iteration (bottleneck)
® Avoids (expensive) computation of gradient certificate
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Algorithm

Algorithm 1: Compute the best WSOS lower bound and a dual certificate

input : A polynomial p; a tolerance € > 0.

parameters: An oracle for computing the barrier Hessian H for X; the gradient certificate x; for the
constant one polynomial; a radius r € (0,1/4).

outputs  : A lower bound c on the optimal WSOS lower bound c* satisfying ¢* — ¢ < ¢; a dual
vector x € (X*)° certifying the nonnegativity of p — c.

-

Set initial x and c. (closed-form formula)

2 repeat
3 Set x := 2x — H(x)"*(p — ¢). (Newton step).
4 Find the largest real number c; such that
2 _ r
IH)"2(x = HE) ™ (p = e 1))l < — -
r+1
5 Set Ac:=c¢; —c. Set c:=cy.
6 until Ac < p,Ce
7 return c and x.
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Efficiency

Theorem (M. and Papp)

Algorithm 1 is globally linearly convergent to ¢* = max{c | p— c € L}, the
optimal WSOS lower bound for the polynomial p.

® Requires O(dim(X)3) time per iteration.
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Univariate polynomials

Use Chebyshev bases

® Represent polynomials in Chebyshev bases to help with conditioning of
inverse Hessian matrices
® Also improves rate of convergence

® Tolerance: user input, ¢c* —c<e¢
® How close the c is to the optimal weighted sums of squares bound c*.

The bound c¢ returned by the algorithm is guaranteed to satisfy

c<c*<c+e

Number of iterations required is O(d®log( HI[’”d))

g

Faster than using all-purpose semidefinite solver to find a positive
semidefinite S matrix
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Example continued

® Continue with coefficient vector in the monomial basis
p=(1,—-1,1,1,-1), over the interval [—1, 1], represented by the weights
g(z) = (1,1 - 22).

® The algorithm with inputs p and tolerance € = 10~7 in double-precision
floating point arithmetic outputs the bound

c = 27%3.7190305926654593,

and a certificate vector

173493184462864992
67729650226350000

x = 2733 | —120611300436615200

—161900156381728960
—5796381308580693

16/19



Dual certificates and cones of certificates Lower bounding polynomials using dual certificates
000000000 0O0000e00

Example continued - Plot
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iterations
The convergence of the sequence of certified lower bounds computed by the
algorithm to the minimum of the polynomial studied in the example,
illustrating the linear convergence.
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Rational certificates

Output of Algorithm 1 gives (x, ¢) such that x certifies p — ¢ > 0.
Certificate x is automatically a rational certificate
® floating point number is already a rational number

Can directly convert x to an exact rational primal certificate S(x, p)

® (Can also round x to a nearby rational certificate with smaller
denominators:

Lemma (M. and Papp)

Suppose that ||x — y||x < r < 1/2 and choose any large enough integer
denominator N to satisfy

2 N
H(x)'?|| < = 1—2r).
IH 211 < § s =21
. l dim(z) . dim(Z) -
Then every point xy € {Z with [[xy — x|| < Y55~ satisfies

Ixn = Yllew < 3.
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Summary

We use dual certificates to certify polynomials are WSOS

Dual certificates certify entire cones of polynomials
® Particularly useful in numerical methods

Application includes an efficient iterative algorithm to compute the best
(WSOS) lower bound for a polynomial and a rational certificate

Full paper: http://arxiv.org/abs/2105.11369
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