Lower bounding polynomials using dual certificates

Dual certificates and efficient rational sum-of-squares decompositions for polynomial optimization over compact sets

Maria Macaulay (Joint with Dávid Papp)

North Carolina State University

June 7-11, 2021

NC STATE UNIVERSITY

Supported in part by NSF DMS-1719828 and NSF DMS-1847865.

Dual certificates and cones of certificates 000000000

Lower bounding polynomials using dual certificates

1 Dual certificates and cones of certificates

2 Lower bounding polynomials using dual certificates

Dual certificates and cones of certificates •00000000

Nonnegativity certificates

- A *nonnegativity certificate* is a representation of a polynomial *p* that makes the nonnegativity of *p* on a semialgebraic set *S* apparent.
- Example: Weighted sums of squares
- Let S be a semialgebraic set

$$S = \{ \mathbf{x} \in \mathbb{R}^U \mid g_i(\mathbf{x}) \geq 0, ext{ for all } i = 1, \dots, m \}$$

with each g_i a polynomial

• Denote the cone of weighted sums-of-squares (WSOS) polynomials by Σ , so

$$\Sigma = \left\{ \sum_{i=1}^m g_i s_i \mid s_i \text{ a sum of squares polynomial, } \deg(s_i) \leq 2d_i, i = 1, \dots, m
ight\}$$

- Any element of Σ is nonnegative on S
- If p is WSOS, then p is nonnegative on S
 - WSOS representation is a nonnegativity certificate for *p*.

Dual certificates and cones of certificates •00000000

Nonnegativity certificates

- A *nonnegativity certificate* is a representation of a polynomial *p* that makes the nonnegativity of *p* on a semialgebraic set *S* apparent.
- Example: Weighted sums of squares
- Let S be a semialgebraic set

 $S = \{ \mathbf{x} \in \mathbb{R}^U \mid g_i(\mathbf{x}) \geq 0, ext{ for all } i = 1, \dots, m \}$

with each g_i a polynomial

• Denote the cone of weighted sums-of-squares (WSOS) polynomials by Σ , so

$$\Sigma = \left\{ \sum_{i=1}^m g_i s_i \mid s_i ext{ a sum of squares polynomial, } \deg(s_i) \leq 2d_i, i=1,\ldots,m
ight\}$$

- Any element of Σ is nonnegative on S
- If p is WSOS, then p is nonnegative on S
 - WSOS representation is a nonnegativity certificate for *p*.

Dual certificates and cones of certificates ••••••••

Nonnegativity certificates

- A *nonnegativity certificate* is a representation of a polynomial *p* that makes the nonnegativity of *p* on a semialgebraic set *S* apparent.
- Example: Weighted sums of squares
- Let S be a semialgebraic set

$$\mathcal{S} = \{ \mathbf{x} \in \mathbb{R}^U \mid g_i(\mathbf{x}) \geq 0, ext{ for all } i = 1, \dots, m \}$$

with each g_i a polynomial

• Denote the cone of weighted sums-of-squares (WSOS) polynomials by Σ , so

$$\Sigma = \left\{ \sum_{i=1}^m g_i s_i \mid s_i ext{ a sum of squares polynomial, } \mathsf{deg}(s_i) \leq 2 d_i, i = 1, \dots, m
ight\}$$

- Any element of Σ is nonnegative on S
- If p is WSOS, then p is nonnegative on S
 - WSOS representation is a nonnegativity certificate for *p*.

Lower bounding polynomials using dual certificates

Notation and background

Proposition

- Example: univariate case, sums of squares over the real line: Λ maps **x** to its Hankel matrix.
- So checking if a polynomial is WSOS amounts to finding a positive semidefinite matrix.
- The matrix **S** can be taken to be a nonnegativity certificate.
- A notation will be used throughout.

Y. Nesterov, "Squared functional systems and optimization problems"

Lower bounding polynomials using dual certificates

Notation and background

Proposition

- Example: univariate case, sums of squares over the real line: Λ maps **x** to its Hankel matrix.
- So checking if a polynomial is WSOS amounts to finding a positive semidefinite matrix.
- The matrix **S** can be taken to be a nonnegativity certificate.
- A notation will be used throughout.

Y. Nesterov, "Squared functional systems and optimization problems"

Notation and background

Proposition

- Example: univariate case, sums of squares over the real line: Λ maps **x** to its Hankel matrix.
- So checking if a polynomial is WSOS amounts to finding a positive semidefinite matrix.
- The matrix **S** can be taken to be a nonnegativity certificate.
- A notation will be used throughout.

Y. Nesterov, "Squared functional systems and optimization problems"

Lower bounding polynomials using dual certificates

Notation and background

Proposition

- Example: univariate case, sums of squares over the real line: Λ maps **x** to its Hankel matrix.
- So checking if a polynomial is WSOS amounts to finding a positive semidefinite matrix.
- The matrix **S** can be taken to be a nonnegativity certificate.
- Λ notation will be used throughout.

Y. Nesterov, "Squared functional systems and optimization problems"

Dual certificates

• Let $g(\cdot)$, $H(\cdot)$ denote the gradient and the Hessian (respectively) of the function

$$f(\mathbf{x}) = -\ln(\det(\Lambda(\mathbf{x}))) \tag{1}$$

Theorem (M. and Papp)

Let $x\in (\Sigma^*)^\circ$ be arbitrary. Then the matrix $\bm{S}=\bm{S}(x,p)$ defined by

$$\mathbf{S}(\mathbf{x},\mathbf{p})\stackrel{\mathrm{def}}{=} \Lambda(\mathbf{x})^{-1}\Lambda\Big(H(\mathbf{x})^{-1}\mathbf{p}\Big)\Lambda(\mathbf{x})^{-1}$$

satisfies $\Lambda^*(\mathbf{S}) = \mathbf{p}$.

- Using theorem from previous slide, if $\mathbf{S} \succcurlyeq 0$, then $\mathbf{p} \in \Sigma$.
- We say **x** is a *dual certificate* for $\mathbf{p} \in \Sigma$ if $H(\mathbf{x})^{-1}\mathbf{p} \in \Sigma^*$.

Dual certificates and cones of certificates $\texttt{OOO}{\textcircled{OOOOO}}$ Lower bounding polynomials using dual certificates

Gradient certificates

$$\mathbf{S}(\mathbf{x},\mathbf{p}) \stackrel{\text{def}}{=} \Lambda(\mathbf{x})^{-1} \Lambda\big(H(\mathbf{x})^{-1} \mathbf{p} \big) \Lambda(\mathbf{x})^{-1}$$

Proposition

For every $\mathbf{p} \in \Sigma^{\circ}$, there exists a unique $\mathbf{x} \in (\Sigma^{*})^{\circ}$ satisfying $-g(\mathbf{x}) = \mathbf{p}$.

- If $-g(\mathbf{x}) = \mathbf{p}$, then $\mathbf{S}(\mathbf{x}, \mathbf{p}) \succ 0$.
- Therefore every $\boldsymbol{p}\in \Sigma^\circ$ has a dual certificate
- We call **x** the *gradient certificate* of **p** if **x** is a dual certificate for **p** and $-g(\mathbf{x}) = \mathbf{p}$.

Y. Nesterov, "Squared functional systems and optimization problems"

Dual certificates - properties

- Can use x to get WSOS decomposition
 - x dual certificate for $p\implies S(x,p)\succcurlyeq 0$ and $\Lambda^*(S)=p$
 - Then can factor S(x, p) (Cholesky, LDL^T)
 - But **x** itself is already a *nonnegativity certificate* for **p**.
- Cones of certificates: denote by

$$\mathcal{C}(\mathbf{p}) \stackrel{\mathrm{def}}{=} \{ \mathbf{x} \in (\Sigma^*)^\circ \, | \, H(\mathbf{x})^{-1} \mathbf{p} \in \Sigma^* \}$$

$$\mathcal{P}(\mathbf{x}) \stackrel{\mathrm{def}}{=} \{ \mathbf{p} \in \Sigma \, | \, \mathcal{H}(\mathbf{x})^{-1} \mathbf{p} \in \Sigma^* \}$$

Theorem (M. and Papp)

The cone $C(\mathbf{p})$ (resp. $\mathcal{P}(\mathbf{x})$) is a full-dimensional cone whenever \mathbf{p} (resp. \mathbf{x}) is in the interior of Σ (resp. Σ^*).

Dual certificates - properties

- Can use x to get WSOS decomposition
 - x dual certificate for $p\implies S(x,p)\succcurlyeq 0$ and $\Lambda^*(S)=p$
 - Then can factor S(x, p) (Cholesky, LDL^T)
 - But x itself is already a *nonnegativity certificate* for p.
- Cones of certificates: denote by

$$\mathcal{C}(\boldsymbol{p}) \stackrel{\mathrm{def}}{=} \{\boldsymbol{x} \in (\boldsymbol{\Sigma}^*)^\circ \,|\, \boldsymbol{\textit{H}}(\boldsymbol{x})^{-1}\boldsymbol{p} \in \boldsymbol{\Sigma}^*\}$$

$$\mathcal{P}(\mathbf{x}) \stackrel{\mathrm{def}}{=} \{ \mathbf{p} \in \boldsymbol{\Sigma} \, | \, \mathcal{H}(\mathbf{x})^{-1} \mathbf{p} \in \boldsymbol{\Sigma}^* \}$$

Theorem (M. and Papp)

The cone C(p) (resp. $\mathcal{P}(x)$) is a full-dimensional cone whenever p (resp. x) is in the interior of Σ (resp. Σ^*).

Primal vs dual certificates

- Primal certificate: an explicit WSOS decomposition of a polynomial
 - A rewriting of the polynomial
 - A single WSOS decomposition certifies a single polynomial
 - Primal certificate: a matrix ${\boldsymbol{S}}$ with $\Lambda^*({\boldsymbol{S}})={\boldsymbol{p}}$ for a polynomial ${\boldsymbol{p}}$
 - Still, a single matrix certifies a single polynomial
- Dual certificate: a vector from the dual cone which certifies a polynomial to be WSOS
 - Distinct from the polynomials they certify
 - A single dual certificate certifies a full-dimensional cone of polynomials
 - A single polynomial is certified by a full-dimensional cone of dual certificates
 - A primal certificate (WSOS decomposition, **S** matrix) can be constructed from the dual certificate

Dual certificates and cones of certificates 0000000000

Lower bounding polynomials using dual certificates

Example

- Consider the univariate polynomial p given by $p(z) = 1 z + z^2 + z^3 z^4$.
- Show *p* nonnegative on interval [-1, 1]: want to show coefficient vector $\mathbf{p} = (1, -1, 1, 1, -1)$ is a member of $\Sigma_{1,2d}^{\mathbf{g}}$, with weights $\mathbf{g}(z) = (1, 1 z^2)$ and degree vector $\mathbf{d} = (2, 1)$.
- $\Lambda: \mathbb{R}^5 \to \mathbb{S}^3 \oplus \mathbb{S}^2$ operator is given by

$$\Lambda(x_0, x_1, x_2, x_3, x_4) = \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \\ x_2 & x_3 & x_4 \end{pmatrix} \oplus \begin{pmatrix} x_0 - x_2 & x_1 - x_3 \\ x_1 - x_3 & x_2 - x_4 \end{pmatrix}.$$

• The adjoint operator is given by

$$\begin{split} \Lambda^*(\mathbf{S}^1 \oplus \mathbf{S}^2) &= (S_{00}^1 + S_{00}^2, 2S_{01}^1 + 2S_{01}^2, 2S_{02}^1 + S_{11}^1 - S_{00}^2 + S_{11}^2, \\ &2S_{12}^1 - 2S_{01}^2, S_{22}^1 - S_{11}^2). \end{split}$$

- Consider $\mathbf{x} = (5, 0, 5/2, 0, 15/8)$
- Claim: x certifies that p is nonnegative

Lower bounding polynomials using dual certificates

Example continued

• By a previous theorem, it is sufficient to verify that

$$\frac{128}{5}\Lambda\left(H(\mathbf{x})^{-1}\mathbf{p}\right) = \begin{pmatrix} 144 & -20 & 72\\ -20 & 72 & -5\\ 72 & -5 & 49 \end{pmatrix} \oplus \begin{pmatrix} 72 & -15\\ -15 & 23 \end{pmatrix} \succeq \mathbf{0}.$$

• Can also compute rational matrices **S**₁ and **S**₂ to certify *p* by plugging our certificate into the formula for the **S**(**x**, **p**) matrix, obtaining

$$\boldsymbol{S}_1 = \frac{1}{40} \begin{pmatrix} 22 & -5 & -26 \\ -5 & 18 & 5 \\ -26 & 5 & 52 \end{pmatrix} \quad \text{and} \quad \boldsymbol{S}_2 = \frac{1}{40} \begin{pmatrix} 18 & -15 \\ -15 & 92 \end{pmatrix}.$$

• Factor these using the *LDL*^T form of Cholesky decomposition:

$$p(z) = \frac{11}{20} \left(-\frac{13z^2}{11} - \frac{5z}{22} + 1 \right)^2 + \frac{371}{880} \left(z - \frac{20z^2}{371} \right)^2 + \frac{3937z^4}{7420} + \left(1 - z^2 \right) \left(\frac{9}{20} \left(1 - \frac{5z}{6} \right)^2 + \frac{159z^2}{80} \right).$$

Easier-to-check sufficient conditions

• Rather than checking $\Lambda(H(\mathbf{x})^{-1}\mathbf{p}) \geq \mathbf{0}$, evaluating formula below is sufficient:

Lemma (M. and Papp)

Let $\Lambda(\cdot) \in \mathbb{R}^{\nu \times \nu}$. Suppose $\mathbf{p} \in \Sigma^{\circ}$ and let $\mathbf{x} \in (\Sigma^*)^{\circ}$ be any vector that satisfies the inequality

$$\mathbf{p}^{\mathrm{T}}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}-(
u-1)\mathbf{\mathcal{H}}(\mathbf{x})^{-1}
ight)\mathbf{p}\geq0.$$

Then $\mathbf{x} \in \mathcal{C}(\mathbf{p})$, equivalently, $\mathbf{p} \in \mathcal{P}(\mathbf{x})$.

• Or check if the certificate is close enough to the gradient certificate:

Corollary

Let $\mathbf{x}, \mathbf{y} \in \Sigma^*$ and $\mathbf{p} \in \Sigma$, with $-g(\mathbf{y}) = \mathbf{p}$. Then if $\|H(\mathbf{x})^{1/2}(\mathbf{x} - \mathbf{y})\| < \frac{1}{2}$, \mathbf{x} certifies \mathbf{p} .

• If
$$-g(\mathbf{x}) = \mathbf{p}$$
,

- x is "central" in $C(\mathbf{p})$ (result from interior-point method theory)
- **p** is "central" in $\mathcal{P}(\mathbf{x})$

Easier-to-check sufficient conditions

• Rather than checking $\Lambda(H(\mathbf{x})^{-1}\mathbf{p}) \geq \mathbf{0}$, evaluating formula below is sufficient:

Lemma (M. and Papp)

Let $\Lambda(\cdot) \in \mathbb{R}^{\nu \times \nu}$. Suppose $\mathbf{p} \in \Sigma^{\circ}$ and let $\mathbf{x} \in (\Sigma^*)^{\circ}$ be any vector that satisfies the inequality

$$\mathbf{p}^{\mathrm{T}}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}-(
u-1)\mathbf{\mathcal{H}}(\mathbf{x})^{-1}
ight)\mathbf{p}\geq0.$$

Then $\mathbf{x} \in \mathcal{C}(\mathbf{p})$, equivalently, $\mathbf{p} \in \mathcal{P}(\mathbf{x})$.

• Or check if the certificate is close enough to the gradient certificate:

Corollary

Let $\mathbf{x}, \mathbf{y} \in \Sigma^*$ and $\mathbf{p} \in \Sigma$, with $-g(\mathbf{y}) = \mathbf{p}$. Then if $\|H(\mathbf{x})^{1/2}(\mathbf{x} - \mathbf{y})\| < \frac{1}{2}$, \mathbf{x} certifies \mathbf{p} .

• If
$$-g(\mathbf{x}) = \mathbf{p}$$
,

- x is "central" in $\mathcal{C}(\mathbf{p})$ (result from interior-point method theory)
- p is "central" in P(x)

Lower bounding polynomials using dual certificates

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb **p** in any direction and still certify it with **x**, and
 - We can perturb x in any direction and still certify p.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb x to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that $\mathbf{p} c$ is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb **p** in any direction and still certify it with **x**, and
 - We can perturb x in any direction and still certify p.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb x to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that $\mathbf{p} c$ is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb \boldsymbol{p} in any direction and still certify it with $\boldsymbol{x},$ and
 - We can perturb x in any direction and still certify p.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb x to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that $\mathbf{p} c$ is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb **p** in any direction and still certify it with **x**, and
 - We can perturb x in any direction and still certify p.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb x to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that $\mathbf{p} c$ is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb **p** in any direction and still certify it with **x**, and
 - We can perturb x in any direction and still certify p.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb **x** to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that p c is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb **p** in any direction and still certify it with **x**, and
 - We can perturb x in any direction and still certify p.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb **x** to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that $\mathbf{p} c$ is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

- From a previous theorem, we know that both $\mathcal{C}(p)$ and $\mathcal{P}(x)$ are full-dimensional, so
 - We can perturb **p** in any direction and still certify it with **x**, and
 - We can perturb **x** in any direction and still certify **p**.
- Do this iteratively to find *lower bound for* **p**:
 - Perturb **p** to $\mathbf{p} c$, with $\mathbf{p} c$ still certified by **x**
 - Perturb **x** to get close to gradient certificate of $\mathbf{p} c$
 - Result: find (or get close to) best possible upper bound c such that p c is WSOS.
- Algorithm given in later slide
 - Guaranteed to converge linearly to optimal bound
 - Requires only one Hessian computation per iteration (bottleneck)
 - Avoids (expensive) computation of gradient certificate

Algorithm

Algorithm 1: Compute the best WSOS lower bound and a dual certificate

input : A polynomial **p**; a tolerance $\varepsilon > 0$.

- parameters: An oracle for computing the barrier Hessian H for Σ ; the gradient certificate x_1 for the constant one polynomial; a radius $r \in (0, 1/4)$.
- outputs : A lower bound c on the optimal WSOS lower bound c* satisfying $c^* c \le \varepsilon$; a dual vector $\mathbf{x} \in (\Sigma^*)^\circ$ certifying the nonnegativity of $\mathbf{p} c$.
- 1 Set initial x and c. (closed-form formula)

2 repeat

3 Set
$$x := 2x - H(x)^{-1}(p - c)$$
. (Newton step).

4 Find the largest real number c₊ such that

$$\|H(\mathbf{x})^{1/2}(\mathbf{x}-H(\mathbf{x})^{-1}(\mathbf{p}-c_+\mathbf{1}))\| \leq \frac{r}{r+1}.$$

5 | Set
$$\Delta c := c_+ - c$$
. Set $c := c_+$.
6 until $\Delta c < \rho_r C \varepsilon$

7 return c and x.

Dual certificates and cones of certificates 000000000

Lower bounding polynomials using dual certificates

Efficiency

Theorem (M. and Papp)

Algorithm 1 is globally linearly convergent to $c^* = \max\{c \mid \mathbf{p} - c \in \Sigma\}$, the optimal WSOS lower bound for the polynomial \mathbf{p} .

• Requires $\mathcal{O}(\dim(\Sigma)^3)$ time per iteration.

Univariate polynomials

- Use Chebyshev bases
 - Represent polynomials in Chebyshev bases to help with conditioning of inverse Hessian matrices
 - Also improves rate of convergence
- Tolerance: user input, $c^* c < \varepsilon$
 - How close the c is to the optimal weighted sums of squares bound c*.
- The bound *c* returned by the algorithm is guaranteed to satisfy

$$c \leq c^* \leq c + \varepsilon$$

- Number of iterations required is $\mathcal{O}(d^5 \log(\frac{\|\mathbf{p}\| d}{\varepsilon}))$
- Faster than using all-purpose semidefinite solver to find a positive semidefinite **S** matrix

Example continued

- Continue with coefficient vector in the monomial basis $\mathbf{p} = (1, -1, 1, 1, -1)$, over the interval [-1, 1], represented by the weights $\mathbf{g}(z) = (1, 1 z^2)$.
- The algorithm with inputs **p** and tolerance $\varepsilon = 10^{-7}$ in double-precision floating point arithmetic outputs the bound

$$c = 2^{-53} \cdot 7190305926654593,$$

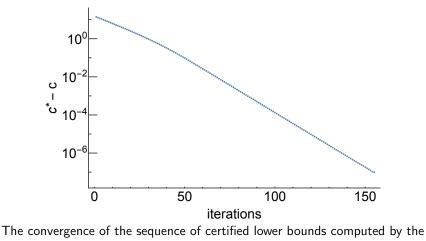
and a certificate vector

$$\mathbf{x} = 2^{-33} \begin{pmatrix} 173493184462864992 \\ 67729650226350000 \\ -120611300436615200 \\ -161900156381728960 \\ -5796381308580693 \end{pmatrix}$$

Dual certificates and cones of certificates 000000000

Lower bounding polynomials using dual certificates

Example continued - Plot



algorithm to the minimum of the polynomial studied in the example, illustrating the linear convergence.

Rational certificates

- Output of Algorithm 1 gives (\mathbf{x}, c) such that \mathbf{x} certifies $\mathbf{p} c \ge 0$.
- Certificate x is automatically a rational certificate
 - floating point number is already a rational number
- Can directly convert \mathbf{x} to an exact rational primal certificate $\mathbf{S}(\mathbf{x}, \mathbf{p})$
- Can also round **x** to a nearby rational certificate with smaller denominators:

Lemma (M. and Papp)

Suppose that $\|\mathbf{x} - \mathbf{y}\|_{\mathbf{x}} \le r < 1/2$ and choose any large enough integer denominator N to satisfy

$$\|H(\mathbf{x})^{1/2}\| \leq \frac{2}{3} \frac{N}{\sqrt{\dim(\Sigma)}}(1-2r).$$

Then every point $\mathbf{x}_N \in \frac{1}{N} \mathbb{Z}^{\dim(\Sigma)}$ with $\|\mathbf{x}_N - \mathbf{x}\| \leq \frac{\sqrt{\dim(\Sigma)}}{2N}$ satisfies $\|\mathbf{x}_N - \mathbf{y}\|_{\mathbf{x}_N} \leq \frac{1}{2}$.

Summary

- We use dual certificates to certify polynomials are WSOS
- Dual certificates certify entire cones of polynomials
 - Particularly useful in numerical methods
- Application includes an efficient iterative algorithm to compute the best (WSOS) lower bound for a polynomial and a rational certificate
- Full paper: http://arxiv.org/abs/2105.11369