Mustafin Degenerations

Between applied and arithmetic geometry

Marvin Anas Hahn (with Binglin Li and Annette Werner)

> Max-Planck-Institut für Mathematik in den Naturwissenschaften

Effective Methods in Algebraic Geometry

June 2021

MAX-PLANCK-GESELLSCHAFT

Degenerations: Central technique in the study of algebraic varieties.

Mustafin degenerations:

- May be computed in computer algebra systems
- Have an interesting combinatorial structure

Applications in several different areas of algebraic and arithmetic geometry.

- 1976 Mustafin: Introduced Uniformisation in higher dimensions
- 2001 Faltings: Shimura varieties
- 2005 Keel and Tevelev: Chow quotients of Grassmannians
- 2011 Cartwright, Häbich, Sturmfels and Werner: Combinatorial interface with tropical geometry

2019 He and Zhang: Brill-Noether theory

Today:

- Review some of the theory surrounding Mustafin degenerations.
- Give some classification results
- Show on a novel and curious connection to computer vision.

1 What is a degeneration?

2 Bruhat-Tits buildings and convex hulls

3 Classification of Mustafin degenerations

1 What is a degeneration?

2 Bruhat–Tits buildings and convex hulls

3 Classification of Mustafin degenerations

4 Families of multiview varieties

Definition

A limiting process of a variety X, with limit X_0 , that preserves geometric information, is called *degeneration from* X to X_0 .

For us: Degenerations are flat and proper schemes over a discrete valuation ring.

Central question: Existence and construction of degenerations with given properties

Mustafin degenerations give an attractive and conceptual combinatorial framework.

1 What is a degeneration?

2 Bruhat–Tits buildings and convex hulls

3 Classification of Mustafin degenerations

4 Families of multiview varieties

Mustafin degenerations are degenerations induced by combinatorial data in so-called **Bruhat–Tits buildings** that are central in the theory of algebraic groups.

Here: Focus on the building induced by $\mathrm{GL}(V)$, where V is a vector space over a discretely valued field.

Bruhat–Tits building > Valued field

To a valued field K one may associate a "coefficient field" k. The field k is called residue field.

$$K \xrightarrow{\text{residue field}} k$$

Example

• We consider

$$K = \mathbb{C}((t)) = \left\{ \sum_{n \ge l} a_n t^n \mid a_n \in \mathbb{C}, \ l \in \mathbb{Z} \right\}.$$

Thus, we obtain

 $k \cong \mathbb{C}.$

Example

• Let $K = \mathbb{Q}_p$ the p-adic numbers for a prime p. For all $q \in \mathbb{Q}_p$, we have

$$q = \sum_{n \ge l} a_n p^n$$
 with $a_n \in \{0, \dots, p-1\}, l \in \mathbb{Z}.$

Thus, we obtain

$$k \cong \mathbb{F}_p.$$

Let V be a vector space over a discretely valued field K with $\dim(V)=d.$

Definition

The Bruhat–Tits building \mathfrak{B}_d induced by $\operatorname{GL}(V)$ is the geometric realisation of a simplicial complex.

The vertex set is given by equivalence classes of invertible matrices $g\in \mathrm{GL}(V).$

Local realisation of the building \mathfrak{B}_2 for $K = \mathbb{Q}_2$

Definition

A finite set of vertices $\Gamma \subset \mathfrak{B}_d$ is called *point configuration*.

Analogously to polytopes: Convex hulls $\operatorname{conv}(\Gamma)$ of point configurations Γ .

Analogously to polytopes: Convex hulls $conv(\Gamma)$ of point configurations $\Gamma.$

Theorem (Faltings'01)

For any point configuration $\Gamma \subset \mathfrak{B}_d$, we have $\operatorname{conv}(\Gamma)$ is a finite simplicial complex.

1 What is a degeneration?

2 Bruhat–Tits buildings and convex hulls

3 Classification of Mustafin degenerations

4 Families of multiview varieties

Definition

A Mustafin degeneration $X(\Gamma)$ is a degeneration of $X \subset \mathbb{P}(V)$ induced by a point configuration $\Gamma \subset \mathfrak{B}_d$. The limit X_0 is a variety over k.

Theorem (H.-Li'17)

Let $X = \mathbb{P}(V)$, $\Gamma \subset \mathfrak{B}_d$ a point configuration and X_0 the limit of the induced Mustafin degeneration. Then, the geometry of X_0 is determined by $\operatorname{conv}(\Gamma)$.

Theorem (H.-Li'17)

Let $X = \mathbb{P}(V)$, $\Gamma \subset \mathfrak{B}_d$ a point configuration and X_0 the limit of the induced Mustafin degeneration. Then, the geometry of X_0 is determined by $\operatorname{conv}(\Gamma)$.

In H.–Werner ('19) and H. ('20), we generalise these results for \boldsymbol{X} a curve.

1 What is a degeneration?

2 Bruhat–Tits buildings and convex hulls

3 Classification of Mustafin degenerations

In multi-view geometry, one considers the following computer vision problem:

Question

What are the properties of a real world scene, given several images of it?

For n images, the question is modelled by:

• Every camera i corresponds to a projection from three-space to two-space, i.e. a matrix $A_i\in \mathrm{Mat}(3\times 4)$ with $\mathrm{rank}(A_i)=3$ and map

$$A_i \colon \mathbb{P}^3 \dashrightarrow \mathbb{P}^2.$$

• One then considers for $\underline{A} = (A_1, \dots, A_n)$ the map

$$f_{\underline{A}} \colon \mathbb{P}^3 \xrightarrow{(A_1, \dots, A_n)} (\mathbb{P}^2)^n$$

Definition

We call $M_{\underline{A}} = \overline{\text{Im}(f_{\underline{A}})}$ the associated *multi-view variety*.

Theorem (Aholt–Sturmfels–Thomas'13)

The space of multi-view varieties

 $\{M_{\underline{A}} \mid A_i \in \operatorname{Mat}(3 \times 4) \text{ with } \operatorname{rank}(A) = 3 \text{ and generic} \}$

lies dense in an irreducible component of the respective Hilbert scheme.

Theorem (Aholt-Sturmfels-Thomas'13)

The space of multi-view varieties

 $\{M_{\underline{A}} \mid A_i \in \operatorname{Mat}(3 \times 4) \text{ with } \operatorname{rank}(A) = 3 \text{ and generic} \}$

lies dense in an irreducible component of the respective Hilbert scheme.

Question

What does the boundary look like?

Theorem (Werner'05)

One may compactify the Bruhat–Tits building \mathfrak{B}_d by full rank matrices of size $e \times d$ for $e \leq d$.

Theorem (Werner'05)

One may compactify the Bruhat–Tits building \mathfrak{B}_d by full rank matrices of size $e \times d$ for $e \leq d$.

- A point configuration Γ in the boundary of $\overline{\mathfrak{B}_4}$ induces a degeneration $\mathcal{MV}(\Gamma)$ of multi-view varieties that we call generalised Mustafin degeneration.
- The limit $\mathcal{MV}(\Gamma)_0$ for $t \to 0$ lies in the boundary.

Hope: The entire boundary is reached by this construction.

Theorem (H.'20)

Let Γ be a point configuration in the compactified Bruhat–Tits building $\overline{\mathfrak{B}_4}$. Then, we obtain a partial classification of the irreducible components of $\mathcal{MV}(\Gamma)_0$.

Finally, we show that a very singular point of the Hilbert scheme is reached.