Local effectivity in projective spaces

Marcin Dumnicki Jagiellonian University Tomasz Szemberg Pedagogical University of Cracow Justyna Szpond Polish Academy of Sciences Pedagogical University of Cracow

> MEGA21 Tromso, June 7-11, 2021

Local positivity is defined by means of Seshadri constants introduced by Demailly around 1990.

Definition

Let X be a smooth projective variety and let L be an ample line bundle on X. Let $P \in X$ be a fixed point and let $f : \operatorname{Bl}_P X \to X$ be the blow up of X at P with the exceptional divisor E. The real number

$$\varepsilon(X; L, P) = \sup \{t \in \mathbb{R} : f^*L - tE \text{ is nef}\}$$

is the Seshadri constant of L at P.

The term local effectivity is coined by us in analogy to the local positivity.

Definition

Let X be a smooth projective variety and let L be an ample line bundle on X. Let $P \in X$ be a fixed point and let $f : \operatorname{Bl}_P X \to X$ be the blow up of X at P with the exceptional divisor E. The real number

$$\mu(X; L, P) = \sup \{t \in \mathbb{R} : f^*L - tE \text{ is effective}\}$$

is the μ -invariant of L at P.

I → □ ► < □ ►</p>

Remark

The reciprocal of $\mu(X; L, P)$ is known as the Waldschmidt constant and was studied in complex analysis before it attracted attention in algebraic geometry.

Image: A image: A

< 注→ 注

Let $R = \mathbb{C}[x_0, \ldots, x_N]$ be the graded ring of complex polynomials.

Definition

The *initial degree* of a homogeneous ideal $I \subset R$ is

$$\alpha(\mathbb{P}^N; I) = \min \left\{ d : (I)_d \neq 0 \right\},\$$

where $(I)_d$ denotes the degree d part of I.

▲ 御 ▶ ▲ 臣 ▶

We are interested in finite sets Z of points in \mathbb{P}^N . The saturated homogeneous ideal $I(Z) \subset R$ of Z is defined by

$$I(Z) = \{f \in R : f(P) = 0 \text{ for all } P \in Z\}.$$

Image: A match the second s

We are interested in finite sets Z of points in \mathbb{P}^N . The saturated homogeneous ideal $I(Z) \subset R$ of Z is defined by

$$I(Z) = \{ f \in R : f(P) = 0 \text{ for all } P \in Z \}.$$

More generally, for a positive integer m > 0 we consider the ideal I(mZ) of all polynomials vanishing to order at least m in all points of Z:

 $I(mZ) = \{f \in R : Df(P) = 0 \text{ for all } P \in Z\}$

and all differential operators D of order $\leq m$.

Waldschmidt constant

For a finite set of points Z we consider the sequence of initial degrees:

```
\alpha(I(Z)), \alpha(I(2Z)), \alpha(I(3Z)), \ldots, \alpha(I(mZ)), \ldots
```

イロン イヨン イヨン イヨン

크

Waldschmidt constant

For a finite set of points Z we consider the sequence of initial degrees:

```
\alpha(I(Z)), \alpha(I(2Z)), \alpha(I(3Z)), \ldots, \alpha(I(mZ)), \ldots
```

Remark

Clearly there is

$$\alpha(I(mZ)) \leq m \cdot \alpha(I(Z))$$

for all $m \geq 1$.

イロン イヨン イヨン イヨン

크

Waldschmidt constant

For a finite set of points Z we consider the sequence of initial degrees:

$$\alpha(I(Z)), \alpha(I(2Z)), \alpha(I(3Z)), \ldots, \alpha(I(mZ)), \ldots$$

Remark

Clearly there is

$$\alpha(I(mZ)) \leq m \cdot \alpha(I(Z))$$

for all $m \ge 1$.

Definition

The Waldschmidt constant of I(Z) is

$$\widehat{\alpha}(I(Z)) = \inf_{m \ge 1} \frac{\alpha(I(mZ))}{m}$$

イロト イヨト イヨト イヨト

э

The Holly Gral

Chudnovsky Conjecture ~ 1980

For an **arbitrary** finite set of points $Z \subseteq \mathbb{P}^N$, there is

$$\widehat{\alpha}(I(Z)) \geq \frac{\alpha(I(Z)) + N - 1}{N}$$

・ロト ・日下・ ・ ヨト

The Holly Gral

Chudnovsky Conjecture ~ 1980

For an **arbitrary** finite set of points $Z \subseteq \mathbb{P}^N$, there is

$$\widehat{\alpha}(I(Z)) \geq \frac{\alpha(I(Z)) + N - 1}{N}.$$

Moreover, for a set Z of r very general points in \mathbb{P}^N , there is

$$\widehat{\alpha}(I(Z)) = \sqrt[N]{r}$$

for *r* sufficiently big.

Demailly Conjecture \sim 1982

For an **arbitrary** finite set of points $Z \subseteq \mathbb{P}^N$, there is

$$\widehat{\alpha}(I(Z)) \geq \frac{\alpha(I(mZ)) + N - 1}{m + N - 1}.$$

A (10) > (10)

What is known

Theorem (Esnault, Viehweg 1983)

Both Conjectures hold for \mathbb{P}^2 .

イロト イヨト イヨト イヨト

э

What is known

Theorem (Esnault, Viehweg 1983)

Both Conjectures hold for \mathbb{P}^2 .

Theorem (Dumnicki, Tutaj-Gasińska and Fouli, Mantero, Xie)

Chudnovsky Conjecture holds for very general sets of points in \mathbb{P}^{N} .

What is known

Theorem (Esnault, Viehweg 1983)

Both Conjectures hold for \mathbb{P}^2 .

Theorem (Dumnicki, Tutaj-Gasińska and Fouli, Mantero, Xie)

Chudnovsky Conjecture holds for very general sets of points in \mathbb{P}^N . Moreover, in this situation

$\widehat{\alpha}(I(Z)) \geq \lfloor \sqrt[N]{r} \rfloor,$

where r is the number of points in Z.

Theorem (Dumnicki, Tutaj-Gasińska and Fouli, Mantero, Xie)

Chudnovsky Conjecture holds for very general sets of points in \mathbb{P}^{N} .

Our result

Demailly's Conjecture holds for $r \ge m^N$ very general points in \mathbb{P}^N .

Image: A image: A

Main results 2

Theorem

For a set Z of r very general points

$$\widehat{\alpha}(I(Z)) \geq \lfloor \sqrt[N]{r} \rfloor.$$

Our result

Let k be a positive integer and let s be an integer in the range $1 \le s \le k$. Let Z be a set of

$$r \ge s(k+1)^{N-1} + (k+1-s)k^{N-1}$$

very general points in \mathbb{P}^N . Then

$$\widehat{\alpha}(I(Z)) \geq k + \frac{s}{k+1}.$$

< 17 > <

Definition

Let $H \cong \mathbb{P}^{N-1}$ be a hyperplane in \mathbb{P}^N and let $Z \subseteq H$ be a subscheme in H. Let D be a divisor of degree d in \mathbb{P}^N . The Waldschmidt decomposition of D with respect to H and Z is the sum of \mathbb{R} -divisors

$$D = D' + \lambda \cdot H$$

such that $\deg(D') = d - \lambda$,

$$\frac{d-\lambda}{\operatorname{mult}_Z D'} \geq \widehat{\alpha}(H \cong \mathbb{P}^{N-1}, Z)$$

and $\lambda \geq 0$ is the least number with this property.

Definition

Let $H \cong \mathbb{P}^{N-1}$ be a hyperplane in \mathbb{P}^N and let $Z \subseteq H$ be a subscheme in H. Let D be a divisor of degree d in \mathbb{P}^N . The Waldschmidt decomposition of D with respect to H and Z is the sum of \mathbb{R} -divisors

$$D = D' + \lambda \cdot H$$

such that $\deg(D') = d - \lambda$,

$$\frac{d-\lambda}{\operatorname{mult}_Z D'} \geq \widehat{\alpha}(H \cong \mathbb{P}^{N-1}, Z)$$

and $\lambda \geq 0$ is the least number with this property.

Remark

Note that λ is the least multiplicity such that H is numerically forced to be contained in D with this multiplicity. It may well happen that the divisor D' still contains H as a component.

Theorem

Let H_1, \ldots, H_s be $s \ge 2$ mutually distinct hyperplanes in \mathbb{P}^N . Let $a_1, \ldots, a_s \ge 1$ be real numbers such that

$$\sum_{j=1}^{s-1}rac{1}{a_j} < 1 \leq \sum_{j=1}^s rac{1}{a_j} ext{ and } q := \left(1-\sum_{j=1}^{s-1}rac{1}{a_j}
ight)\cdot a_s+s-1.$$

Let

$$Z_i = \{P_{i,1}, \ldots, P_{i,r_i}\} \in H_i \setminus \bigcup_{j \neq i} H_j$$

be the set of r_i points such that $\widehat{\alpha}(H_i; Z_i) \ge a_i$ and let $Z = \bigcup_{i=1}^{s} Z_i$. Then $\widehat{\alpha}(\mathbb{P}^N; Z) \ge q$.

イロン 不同 とくほど 不同 とう

Practical statement

Notation

Let $\widehat{\alpha}(\mathbb{P}^N; r)$ denote the Waldschmidt constant of r very general points in \mathbb{P}^N .

Theorem

Let $N \ge 2$, let $k \ge 1$ be an integer. Assume that for some integers r_1, \ldots, r_{k+1} and rational numbers a_1, \ldots, a_{k+1} we have

$$\widehat{\alpha}(\mathbb{P}^{N-1}; r_j) \geq a_j \text{ for } j = 1, \dots, k+1,$$

 $k \leq a_j \leq k+1$ for $j=1,\ldots,k, \quad a_1>k, \quad a_{k+1} \leq k+1.$

Then

$$\widehat{\alpha}(\mathbb{P}^N; r_1 + \ldots + r_{k+1}) \geq \left(1 - \sum_{j=1}^k \frac{1}{a_j}\right) a_{k+1} + k.$$

Example

initial data: N = 3, r = 20

MD + TS + JS Local effectivity in projective spaces

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Ð,

Example

initial data: N=3, r=20compute k: $k^3 < r < (k+1)^3 \Rightarrow k=2$

イロン 不同 とうほう 不同 とう

크

Example

initial data: N=3, r=20compute k: $k^3 < r < (k+1)^3 \Rightarrow k=2$

check all triples: $r = r_1 + r_2 + r_3$

イロト イヨト イヨト イヨト

크

Example

initial data: N = 3, r = 20compute k: $k^3 < r < (k+1)^3 \Rightarrow k = 2$ check all triples: $r = r_1 + r_2 + r_3$ get: $r_1 = r_2 = 8$, $r_3 = 4$

$$a_1 = a_2 = 48/17, \ a_3 = 2$$

 $\widehat{lpha}(\mathbb{P}^3, 20) \ge 31/12$

<ロ> <四> <四> <四> <三</td>

Collection of examples

Figure: Upper and lower bounds for $\widehat{\alpha}(\mathbb{P}^3; r)$

・ロト ・日ト ・ヨト ・ヨト