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Abstract
In this paper we study the set of tensors that admit a special type of decomposi-
tion called an orthogonal tensor train decomposition. Finding equations defining
varieties of low-rank tensors is generally a hard problem, however, the set of
orthogonally decomposable tensors is defined by appealing quadratic equations.
The tensors we consider are an extension of orthogonally decomposable tensors,
and we show that they are defined by similar quadratic equations, as well as some
interesting additional equations.

Introduction

•With the emergence of big data, it is more and more often the case
that information is recorded in the form of a tensor (or
multi-dimensional array).
•The importance of decomposing such a tensor is as follows:
• It provides hidden information about the data at hand.
•Having a concise decomposition of the tensor allows us to store it much more
efficiently.

•Decomposing tensors is often computationally hard. For example,
finding (the number of terms of) the CP-decomposition of a general
tensor is NP-hard, and the set of tensors of CP rank at most r is not
closed for any r ≥ 2, making the low-rank approximation problem
impossible in some instances. It is also notoriously hard to describe
all the defining equations of the set of tensors of rank at most r.
•On the other hand, orthogonally decomposable tensors can be
decomposed efficiently via the slice method or via the tensor power
method. Furthermore, the set of orthogonally decomposable tensors
of bounded rank is closed, making the family of such tensors as
appealing as the set of matrices.
•Tensor networks provide many other ways of decomposing tensors.
They originate from quantum physics and are used to depict the
structure of steady states of Hamiltonians of quantum systems.
Many types of tensor network decompositions, like tensor trains,
also known as matrix product states, are used in machine learning
to decompose data tensors in meaningful ways.
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Figure 1: CP-decomposition of a tensor

Contraction of Two Tensors

Let T ∈ Rm1⊗· · ·⊗Rmk and S ∈ Rn1⊗· · ·⊗Rn` be two tensors such
that mi = nj. The contraction of the tensors T and S along their ith
and jth modes is the tensor R ∈ Rm1 ⊗ · · · ⊗ Rmi−1 ⊗ Rmi+1 ⊗ · · · ⊗
Rmk ⊗ Rn1 ⊗ · · · ⊗ Rnj−1 ⊗ Rnj+1 ⊗ · · · ⊗ Rn` whose entries are

Ra1...ai−1ai+1...akb1...bj−1bj+1...b` =
mi∑
c=1

Ta1...ai−1cai+1...akSb1...bj−1cbj+1...b`.

Tensor Networks

Consider a graph G = (V,E,D) where

•V is the set of vertices.
•E is the set of edges adjacent to
2 vertices.
•D is the set of edges adjacent to
just 1 vertex (also called
dangling edges).

•Each edge in e ∈ E ∪D is
assigned a positive integer ne.
•Each vertex v ∈ V is assigned a
tensor Tv ∈ ⊗v∈eRne.
•The resulting tensor network
state T ∈ ⊗e∈DRne is obtained
by contracting the tensors Tv
along all edges e ∈ E.

For instance, in the graph below,

•V = { 1, 2 }.
•The only member of E is the
dashed edge.

Figure 2: A tensor network

•D consists of blue and red edges.
•T1 ∈ Rn1 ⊗ Rn2 ⊗ Rn3 ⊗ Rn6.
•T2 ∈ Rn4 ⊗ Rn5 ⊗ Rn6.
•The graph represents the tensor
obtained by the contraction of T1
and T2 along their 4th and 3rd
modes respectively.

Tensor Trains

•A tensor train of length l is a tensor network consisting of l vertices
arranged in a line, each of which has 3 adjacent edges.

Figure 3: A tensor train of length l

•A tensor train of length l is said to be symmetrically orthogonally
decomposable (symmetrically odeco) if all the l order-3 tensors
generating the tensor train are symmetrically odeco.
•SOTl,n represents the set of symmetrically odeco tensor trains of
length l which are generated by n× n× n tensors.

Figure 4: Symmetrically
odeco tensor train of
length 3 (A tensor in
SOT3,n)

• It has been shown in [1] that if a tensor train of length 2 has a
symmetrically odeco decomposition, one can find the decomposition
efficiently.

Results

•Let n ≥ 2 and let Pn denote the set of polynomials
fa,b,c,d,σ1,σ2 := pabcd − pσ1(a)σ1(b)σ2(c)σ2(d),

where a, b, c, d ∈ { 1, . . . , n }, σ1 is a permutation on { a, b }, and
σ2 is a permutation on { c, d }. Then Pn vanishes on SOT2,n.

Figure 5: The fact that Pn vanishes on SOT2,n shows that P is symmetric with
respect to any of the two pairs of modes indicated in red and green.

•Let n ≥ 2 and Qn denote the set of polynomials

g
(1)
a,b,c,d,e,f :=

n∑
t=1

pabet pcdft − pabft pcdet,

and
g

(2)
a,b,c,d,e,f :=

n∑
t=1

petab pftcd − pftab petcd,

where a, b, c, d, e, f ∈ { 1, . . . , n }. Then Qn vanishes on SOT2,n.

Figure 6: The fact that Qn vanishes on SOT2,n shows that P •4 P ∈ S2(Rn) ⊗
S2(Rn) ⊗ S2(Rn), where the first two S2(Rn) correspond to the red edges and the
red dashed edges respectively, and the last S2(Rn) corresponds to the commuting of
the indices coming from the purple edges and is the one that gives rise to half of the
equations in Qn. Similarly, P •2 P ∈ S2(Rn) ⊗ S2(Rn) ⊗ S2(Rn), where the first
two S2(Rn) correspond to the green and green dashed edges respectively, and the
last S2(Rn) corresponds to the fact that the indices along the purple edges commute
and gives rise to the other half of the equations in Qn.

•The symmetries that the equations in Qn depict for P •2 P and
P •4 P are very similar to those that have been proved for
symmetrically orthogonally decomposable and ordinary
orthogonally decomposable tensors in [2].

Results

•Let n ≥ 2 and define

hn :=
n∑

k1=1

. . .
n∑

kn=1

∑
σ∈Sn

∑
γ∈Sn

sgn(σ) sgn(γ) pk1σ(1)knγ(1)

pk2σ(2)k1γ(2) · · · pknσ(n)kn−1γ(n).

Then hn vanishes on SOT2,n.
• If n is even, then in fact, hn vanishes on the set of all tensor trains
of length 2 in which the two tensors at the vertices are symmetric
and have rank at most n.
•When n ≤ 5, we are able to computationally show that hn does not
lie in the ideal generated by Pn ∪Qn.
•For all n ≥ 2, the dimension of the Zariski closure of SOT2,n equals
n(n + 1)− 1. This follows from counting the dimensions of the
parametrization of SOT2,n and from noting that the decomposition
of a tensor in SOT2,n can be found uniquely in a sense according
to [1] .
•When n = 2, the dimension of the ideal cut out by Pn,Qn, and the
polynomial hn equals 5 = n(n + 1)− 1, which was checked
numerically using Macaulay2 and Maple.

Conjecture

We conjecture that the Zariski closure of the set SOT2,n is cut out by
the vanishing of Pn,Qn, and the polynomial hn for n ≥ 2, and that
the ideal defined by these equations is prime.
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