E-polynomials

The $Hodge\ polynomial$ of a smooth projective variety X over $\mathbb C$ is

$$P(X) = \sum_{p,q} (-1)^{p+q} \, h^{p,q}(X) \, u^p v^q$$

with $h^{p,q}(X) = \dim H^q(X, \Omega_X^p)$ the Hodge numbers of X. It satisfies

- scissor relation: P(X) = P(Z) + P(X Z) for $Z \subset X$ a closed subvariety
- $multiplicativity: P(X \times Y) = P(X) \cdot P(Y)$

This polynomial extends uniquely to any variety over $\mathbb C$ via the Grothendieck ring

$$e:K(\mathrm{Var}_\mathbb{C}) o \mathbb{Z}[u,v]$$

where e(X) is called the *E-polynomial* of X. Its coefficients are given by the *mixed Hodge numbers*

$$h^{p,q;k}_{\operatorname{mixed}}(X) = \dim \operatorname{Gr}_F^p \operatorname{Gr}_{p+q}^W H^k_c(X,\mathbb{C})$$

of the mixed Hodge structure on the compactly supported cohomology of X [1].

Examples

- $e(\mathbb{A}^1) = e(\mathbb{P}^1) e(\operatorname{pt}) = uv =: q$, the Lefschetz motive
- $\bullet e(\mathbb{P}^n) = e(\mathbb{A}^n) + e(\mathbb{A}^{n-1}) + \dots + e(\mathbb{A}^1) + e(\mathbb{A}^0)$ $= q^n + q^{n-1} + \dots + q + 1$
- To compute $e(\operatorname{SL}(2,\mathbb{C})) = e(\{ad bc = 1\})$, decompose

$$\mathrm{SL}(2,\mathbb{C}) = \left\{a=0, b
eq 0, c = rac{-1}{b}
ight\} \sqcup \left\{a
eq 0, d = rac{bc+1}{a}
ight\}$$

to find $e(\mathrm{SL}(2,\mathbb{C})) = q(q-1) + q^2(q-1) = q^3 - q$.

Complete intersections

The Hodge numbers of a smooth hypersurface $X \subset \mathbb{P}^n$ of degree d can be computed recursively from exact sequences

$$0 o \Omega^p_{\mathbb{P}^n}(-d) o \Omega^p_{\mathbb{P}^n} o \Omega^p_{\mathbb{P}^n}|_X o 0$$

$$0 o \Omega^{p-1}_{\mathbb{P}^n}(-d) o \Omega^p_{\mathbb{P}^n}|_X o \Omega^p_X o 0$$

and cohomology of \mathbb{P}^n . This can be generalized as in [2] to compute the Hodge numbers of a smooth complete intersection $X \subset \mathbb{P}^n$ from the degrees d_i of the hypersurfaces.

Computing E-polynomials

Setup: let $X \subset \mathbb{A}^n$ be the variety with ideal $I = (f_1, \dots, f_k)$. Recursively compute e(X) as follows:

Base cases

if
$$1 \in I$$
 then $e(X) = e(\emptyset) = 0$
if $I = (0)$ then $e(X) = e(\mathbb{A}^n) = q^n$

Product varieties

if $F_1 = \{f_1, \dots, f_m\}$ and $F_2 = \{f_{m+1}, \dots, f_k\}$ do not share variables, then $X = X_1 \times X_2$, hence $e(X) = e(X_1) \cdot e(X_2)$

→ Factor equations -

if $f_i=gh$ with g,h non-constant, then $e\left(X\right)=e\left(X\cap\{g=0\}\right)+e\left(X\cap\{h=0\}\right)-e\left(X\cap\{g=h=0\}\right)$

Linear equations

if $f_i = xg + h$ with g, h not containing x, then let Y be given by the f_j , for $j \neq i$, where x substituted for -h/g. Then $e(X) = e(X \cap \{q = 0\}) + e(Y) - e(Y \cap \{q = 0\})$

Blowups

if the singular locus $Z \subset X$ is non-empty, blow up X at Z, given by affine patches U_i and exceptional divisor E. Then

$$e\left(X
ight) = e\left(Z
ight) + \sum_{i} e\left(U_{i} - \mathop{\cup}\limits_{j < i} U_{j} - E
ight)$$

Rehomogenizing

if X is non-singular, but the projective closure $\overline{X} \subset \mathbb{P}^n$ is singular at another affine patch Y then

$$e\left(X
ight) =e\left(Y
ight) +e\left(\overline{X}-Y
ight) -e\left(\overline{X}-X
ight)$$

► Smooth projective varieties

if X defines a smooth projective variety $\overline{X} \subset \mathbb{P}^n$, compute e(X) from the Hodge numbers $h^{p,q}(X) = \dim H^q(X, \Omega_X^p)$

Jesse Vogel

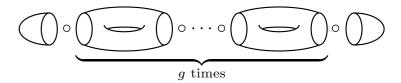
Leiden University
j.t.vogel@math.leidenuniv.nl

Application to representation varieties

Used in [3] to automize the computation of E-polynomials of G-representation varieties of closed surfaces

$$\mathfrak{X}_G(\Sigma_g,G) = \operatorname{Hom}(\pi_1(\Sigma_g),G)$$

using Topological Quantum Field Theory: the E-polynomials can be obtained from the powers of a (large) matrix of E-polynomials of smaller varieties, corresponding to a decomposition of bordisms



For $G = \mathbb{U}_n$ upper triangular matrices of ranks 2, 3 and 4:

$$e\left(\mathfrak{X}_{\mathbb{U}_2}(\Sigma_g)
ight)=q^{2g-1}(q-1)^{2g+1}((q-1)^{2g-1}+1),$$

$$egin{aligned} e\left(\mathfrak{X}_{\mathbb{U}_3}(\Sigma_g)
ight) &= q^{3g-3}(q-1)^{2g}\left(q^2(q-1)^{2g+1} + q^{3g}(q-1)^2
ight. \ &+ q^{3g}(q-1)^{4g} + 2q^{3g}(q-1)^{2g+1}
ight), \end{aligned}$$

$$egin{aligned} e\left(\mathfrak{X}_{\mathbb{U}_4}(\Sigma_g)
ight) &= q^{8g-2}(q-1)^{4g+2} + q^{8g-2}(q-1)^{6g+1} \ &+ q^{10g-4}(q-1)^{2g+3} + q^{10g-4}(q-1)^{4g+1}ig(2q^2-6q+5ig)^g \ &+ 3q^{10g-4}(q-1)^{4g+2} + q^{10g-4}(q-1)^{6g+1} + q^{12g-6}(q-1)^{8g} \ &+ q^{12g-6}(q-1)^{2g+3} + 3q^{12g-6}(q-1)^{4g+2} + 3q^{12g-6}(q-1)^{6g+1}, \end{aligned}$$

the latter requiring to evaluate ≈ 4000 E-polynomials.

What's next?

- Find more efficient methods for computing the Hodge numbers for non-complete intersections
- Prove the algorithm terminates, e.g. find a numerical invariant that decreases at each step
- Optimize the implementation

References

- [1] Deligne, P., Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. No. 44 (1974)
- [2] SGA7 éxposé XI, théorème 2.3
- [3] Hablicsek, M., Vogel, J., Virtual classes of representation varieties of upper triangular matrices via topological quantum field theories (2020) arXiv:2008.06679