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Catalecticant matrices of ternary quartics

We consider the 15-dimensional linear space of symmetric matrices
(LSSM) in Sym2(C6), defined by

Cat(2, 3) :=





a(4,0,0) a(3,1,0) a(3,0,1) a(2,2,0) a(2,1,1) a(2,0,2)
a(3,1,0) a(2,2,0) a(2,1,1) a(1,3,0) a(1,2,1) a(1,1,2)
a(3,0,1) a(2,1,1) a(2,0,2) a(1,2,1) a(1,1,2) a(1,0,3)
a(2,2,0) a(1,3,0) a(1,2,1) a(0,4,0) a(0,3,1) a(0,2,2)
a(2,1,1) a(1,2,1) a(1,1,2) a(0,3,1) a(0,2,2) a(0,1,3)
a(2,0,2) a(1,1,2) a(1,0,3) a(0,2,2) a(0,1,3) a(0,0,4)


: ai∈C


that is the space of catalecticant matrices associated
with ternary quartics
F = a(4,0,0)x

4 + a(3,1,0)x
3y + a(3,0,1)x

3z + a(2,2,0)x
2y2

+ a(2,1,1)x
2yz + a(2,0,2)x

2z2 + a(1,3,0)xy
3 + a(1,2,1)xy

2z

+ a(1,1,2)xyz
2 + a(1,0,3)xz

3 + a(0,4,0)y
4 + a(0,3,1)y

3z

+ a(0,2,2)y
2z2 + a(0,1,3)yz

3 + a(0,0,4)z
4

The problem

Describe the reciprocal variety:
Cat(2, 3)−1 = {A−1 ∈ Sym2(C6)∗ | A ∈ Cat(2, 3), det(A) 6= 0}

ML-degree vs degree
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Cat(2, 3) represents a linear concentra-
tion model:
{N (0,Σ) : Σ−1 ∈ Cat(2, 3) ∩ PD6}

TheML-degree is the number of complex solutions to the critical
equations of the log-likelihood function

`(Σ−1) = log det Σ−1 − trace(SΣ−1),
where S is a sample covariance matrix.

For any LSSM L, we have ML-degree(L) ≤ degL−1 [3] and equal-
ity holds if and only if L−1∩L⊥ = ∅, where the orthogonal space
L⊥ is
L⊥ := {Y ∈ Sym2(C2)∗ | trace(A · Y ) = 0, for all A ∈ L}.

First steps

We work projectively using the adjugate map:
φ: PSym2(C6) 99K PSym2(C6)∗

[A] 7→ [∧5A]
Let detS be the ideal of the determinant of symmetric matrices
in PSym2(C6)∗ and let J be the ideal of the pull-back of the
catalecticant space. Then the reciprocal variety of PCat(2, 3) is

PCat(2, 3)−1 = φ(PCat(2, 3)) = V (J) \ V (detS).

Example with known cases: binary forms

For binary forms of degree 2k:
Cat(k, 2)−1 = G(2, k + 2)

ML-degree(Cat(k, 2)) = deg Cat(k, 2)−1

For binary quartics:

Cat(2,2)=



a(4,0) a(3,1) a(2,2)
a(3,1) a(2,2) a(1,3)
a(2,2) a(1,3) a(0,4)


, Sym2(C3)∗=



y(0,0) y(0,1) y(0,2)
y(0,1) y(1,1) y(1,2)
y(0,2) y(1,2) y(2,2)




The ideal of the pull-back is generated by the relation setting equal-
ity between the (1, 3)-minor and the (2, 2)-minor in the spaces of
symmetric matrices. The reciprocal variety is the quadric
PCat−1(2, 2) = V (y2

(0,2) − y(0,2)y(1,1) + y(0,1)y(1,2) − y(0,0)y(2,2)),
which defines a Grassmannian G(2, 4).

Numerical results

With HomotopyContinuation.jl [1]:
• deg Cat(2, 3)−1 = 85
• ML-degree Cat(2, 3) = 36
• At least 27 cubic generators in the reciprocal ideal
• Cat(2, 3)−1 is singular in rank 1

Theoretical results

• PCat(2, 3)⊥ ∩ PCat(2, 3)−1 is a Veronese surface v2(P2).
• Only the rank-1 locus of PCat(2, 3) contributes to the
degree of PCat(2, 3)−1.

Rank loci and secant varieties

The locus Cr of matrices in PCat(2, 3) of rank at most r is the
secant variety σr(ν4(P2)) [2].
Strategy: study

φ(Cr) := π2(π−1
1 (Cr) ∩ Γ) ⊆ PSym2(C6)∗,

where Γ is the graph closure in the product PSym2(C6) ×
PSym2(C6)∗ and π1, π2 the projection maps from that product.

Image of rank-r points

Given a point A ∈ Cr \ Cr−1, the fiber φ(A) is
• a P5, a P2 and a point, for r = 3, 4, 5 repectively;
• a cubic 8-fold ⊂ P9, cut by a cubic Pfaffian, for r = 2;
• an 11-fold ⊂ P14, cut by the 7 cubic Pfaffians of a 7× 7
skew-symmetric matrix, for r = 1.

Contribution to the degree

Sketch of the proof:
• By Terracini’s lemma:

dimφ(Cr) < dimφ(C1) = 13 for r = 2, . . . , 5
• Complete quadrics as image closure of:

Φ: PSym2(C6) 99K PSym2(C6)× · · · × PSym2(C6)∗
[A] 7→ ([A], [∧2A]), . . . , [∧5A]),

equipped with projection maps πi to each factor.
• Intersection theory on complete quadrics:

deg PCat(2, 3)−1 = [PCat(2, 3)tot]µ14
5 =

∑5
i=1 r · [Cstr

r ] · µ13
5
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where µ5 is the pull-back of the hyperplane class via π5.
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