General setting

The 3-dim. toric variety: M, N: 3-dim. dual lattices, $T = (\mathbb{C}^*)^3$. $\Delta \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ a 3-dimensional lattice polytope, Σ_{Δ} = The normal fan of Δ , with rays $\Sigma_{\Delta}[1]$. \mathbb{P}_{Δ} : The toric variety to the polytope Δ via the normal fan. \mathbb{P}_{Σ} : The toric variety to the fan Σ . The hypersurface:

> $f = \sum a_m x^m, \qquad a_m \in \mathbb{C}$ $m \in \Delta \cap M$

a Laurent polyn. with Newton polytope Δ . $Z_f := \{f = 0\} \subset T$, the associated hypersurface. For a 3-dimensional polytope P we write Z_P for the closure of Z_f in the toric variety \mathbb{P}_P .

The nondegeneracy condition: hypersurface should intersect the toric strata transversally.

The Fine interior and the canonical closure:

For $\nu \in N$ let $ord_{\Delta}(\nu) := \min_{m \in \Delta \cap M} \langle m, \nu \rangle.$ Then define the Fine interior $F(\Delta) := \{ x \in M_{\mathbb{R}} | \langle x, \nu \rangle \ge ord_{\Delta}(\nu) + 1,$ $\nu \in N \setminus \{0\}\}.$ The support $S_F(\Delta)$ are the $\nu \in N \setminus \{0\}$ with $ord_{F(\Delta)}(\nu) = ord_{\Delta}(\nu) + 1.$ $F(\Delta)$ $C(\Delta) := \{ x \in M_{\mathbb{R}} \, | \, \langle x, \nu \rangle \ge ord_{\Delta}(\nu) \}$ is called the canonical $\forall \nu \in S_F(\Delta) \}$ closure of Δ . We obtain $F(\Delta) \subset \Delta \subset C(\Delta)$

The

Classification of some polytopes

 Δ is called:

• canonical, if it contains just 0 in its interior. • Fano, if its vertices are primitive points. There are just 49 3-dim. canonical Fano polytopes left with dim $F(\Delta) = 3$. **Result:** Among the 49 polytopes there are just 5 iso. types for the Fine interior $F(\Delta)$. **Result:** For F out of these 5 types there is exactly one maximal polytope Δ with $F(\Delta) = F$. For $P := C(\Delta) + F(\Delta)$, there are birational toric morphisms

 $\mathbb{P}_P \to \mathbb{P}_{C(\Delta)}, \quad \mathbb{P}_P \to \mathbb{P}$ **Result:** For Δ a maximal poly $\mathbb{P}_{\Delta} \cong \mathbb{P}_{P} \cong \mathbb{P}_{C(\Delta)} \cong \mathbb{P}_{F(\Delta)}.$

Constructing canonical/minimal models

Result (Bat20): If $k := \dim k$ Kodaira dimension of Z_P equals $\kappa(Z_P) = \min(k, 2)$. For our 49 polytopes Δ we get $\kappa(Z_P) = 2.$

Result(Bat20): Z_P has at most canonical sing. and K_{Z_P} is nef. The closure $Z_{F(\Delta)}$ gets a canonical model.

Result(Bat20): $\Sigma_P[1] \subset S_F(\Delta)$. Choose a refinement Σ of Σ_P with $\Sigma[1] = S_F(\Delta)$, then the closure of Z_f in \mathbb{P}_{Σ} gets a minimal model. **Result(Gie21):** In 46 cases $Z_{F(\Delta)}$ gets a Kanev surface, i.e. $p_g(Z_{F(\Delta)}) = 1$, $K^2_{Z_{F(\Delta)}} = 1$ and in 3 cases a surface of Todorov type, that is $p_g(Z_{F(\Delta)}) = 1, \quad q(Z_{F(\Delta)}) = 0, \quad K^2_{Z_{F(\Delta)}} = 2.$

$$\mathbb{P}_{F(\Delta)}$$
.
Tope:
 $\mathbb{P}_{F(\Delta)}$.

$I'(\Delta) \leq 0, \text{ une}$	$F(\Delta)$	\geq	0,	the
----------------------------------	-------------	--------	----	-----

card number of several Kanev surfaces are computable. **References:** (Bat20): Canonical models of toric hypersurfaces. (Gie21): Kanev surfaces in toric 3-folds.