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Low Rank Matrix Completion and Company

Suppose M = [x1, . . . , xn] is a matrix of datapoints, some of whose coordinates are unknown.

M =


m1,1 m1,2 ? m1,4 m1,5 . . .
? m2,2 ? m2,4 ? . . .

m3,1 ? m3,3 m3,4 ? . . .
? m4,2 m4,3 ? m4,5 . . .


How can we infer latent relationships in this kind of partially observed data? This problem has

applications in the design of recommender systems. For example: how can we infer patterns in the

way that users rate movies when we have a small set of reviews from each user?

If our data is expected to be low-rank, it’s natural to recover M as the matrix of minimal rank that

agrees with the observed entries. This is the problem of low rank matrix completion (LRMC):

LRMC:

minimize rank M

subject to mi,j = ci,j, (i, j) ∈ Ω

The problem is essentially to determine the column space V of M from the information that V
incides in certain affine subspaces. We call this a hitting subspace problem. Conversely, a general

hitting subspace problem can be posed as a matrix rank minimization problem if we allow arbitrary

affine constraints on each column. We call this column-affine rank minmization (CARM). This pair

of equivalent problems generalizes the classic notion of LRMC.

Hitting subspace problem:

minimize dim V

subject to V ∩ Wi 6= ∅, i = 1 . . . n

CARM:

minimize rank([x1, . . . xn])
subject to πi(xi) = x̃i, i = 1 . . . n

In [2], Candès and Recht showed that LRMC is often formally equivalent to a certain semidefinite

program. This observation leads to some practical algorithms for LRMC, like the singular value

thresholding algorithm (SVT) from [1]. In turn, SVT can be easily generalized to solve the more

general CARM problem.

HowMuch Data is Enough?

When is CARM well-posed, information-theoretically? There are two perspectives to consider:

Are enough degrees of freedom cut? When the

r-dimensional column space of M is fixed, each

additional column contributes an additional r
degrees of freedom, so, a new column with

k > r affine constraints should impose k − r
extra constraints on V . Naively, we expect that

completion of a rank r matrix should be possible

when at least ⌈
r(m − r)

k − r

⌉
datapoints are given with k observed coordi-

nates each.

Is V identifiable from the projections πi? Sup-

posewe observe arbitrarilymanydatapoints un-

der each projection π1, . . . , πl. Generally, the

most we can learn about V is summarized by

the images πi(V ). In fact, for generic subspaces

V , LRMC will succeed on a sufficiently large

dataset projected under the maps πi if and only

if

V =
⋂
i

π−1
i (πi(V )).

In this case, we say that V is identifiable under

the projections πi.

LRMC in Polynomial Feature Space

What if our data is drawn from a nonlinear algebraic variety? Can we generalize LRMC to exploit

higher degree polynomial relationships?

Let v : Rm → (Rm)⊗p be the Veronese map, sending a point x to its p-fold symmetric tensor

power. If the columns xi of M = [x1, . . . , xn] are drawn from a variety V that is cut out by

degree-p polynomials, then the matrix v(M) = [v(x1), . . . , v(xn)] will be rank-deficient. So, the

natural way to inferM from the column-wise affine constraints πi(xi) = x̃i is to solve the following

“lifted” version of LRMC.

Nonlinear LRMC:

minimize rank[v(x1), . . . , v(xn)]
subject to πi(xi) = x̃i, i = 1 . . . n.

However, affine constraints on the columns of M give rise to implicit nonlinear constraints on the

columns of v(M). How can we solve this new class of rank minimization problems? In [3], Ongie

et al. suggested that v(M) could be inferred (in some cases) as a solution to a LRMC problem. In

our work, we suggest an improved way to infer it as a solution to a hitting subspace problem.

Given a coordinate projection π : Rm → Rk onto a subset S of coordinates, let π⊗p denote the

naturally associatedmap from (Rm)⊗p to (Rk)⊗p that projects onto the coordinates corresponding

to monomials supported on S. When v : Rk → (Rk)⊗p is the Veronese map for Rk, π⊗p makes

the following diagram commute.

Rm (Rm)⊗p

Rk (Rk)⊗p

v

π π⊗p

v

If π(x) = x̃, then π⊗p(v(x)) = v(π(x)) = v(x̃), so π⊗p(y) = v(x̃) is a relaxation of the constraint

that y ∈ v(π−1(x̃)). On the other hand, a stronger condition is to stipulate that y should lie in the

linear span of v(π−1(x̃)). These two approaches give the following rank-minimization problems

for v(M).

Tensorized LRMC:

minimize rank[y1, . . . , yn]
subject to yi ∈ (Rm)⊗p,

π
⊗p
i (yi) = v(x̃i), i = 1 . . . n

Tensorized hitting subspace problem:

minimize rank[y1, . . . , yn]
subject to y ∈ 〈v(π−1

i (x̃i)〉 \ 0, i = 1 . . . n

Ongie et al. showed that tensorized LRMC is well-posed on sufficiently large datasets drawn from

certain unions of subspaces. However, our new tensorized hitting subspace problem may let us

recover v(M) more frequently, because it imposes more constraints on each column of v(M).
Consider the case p = 2. Let x = (x1, . . . , xm) be a column of M , and suppose the coordinates

x1, . . . , xk are known. What constraints can we impose on the corresponding column of v(M),
y = v(x) = (yi,j)1≤i≤j≤n = (xixj)1≤i≤j≤n?

In the LRMC approach, we simply use the
(k+1

2
)
equations yi,j = xixj for 1 ≤ i ≤ j ≤ k.

However, the tensorized hitting subspace problem leads us to consider, e.g., the (k − 1)(m − k)
new equations

y1,i = x1
xj

yj,i

for k < i ≤ n and 2 ≤ j ≤ k. Especially when k � m, this is a big improvement!

An Experiment on Unions of Subspaces

Choose K 2-dimensional subspaces S1, . . . , SK in R15. Generate a dataset of 50K points, with

50 points drawn from each subspace. Permute the dataset so that the clusters of points drawn

from each subspace are unknown, and retain only m coordinates from each datapoint. Can we

recover the missing coordinates?

We compare the performance of regular LRMC against algorithms derived from the tensorized

LRMC problem and the tensorized hitting subspace problem. For a given value of K and m,

we solve 20 pseudorandom problem instances and report the fraction of times that our process

imputes the missing coordinates of the original matrix towithin a modest tolerance. For the LRMC

/ CARM subproblems, we use naive implementation of singular value thresholding, limited to 200

iterations.

When K > 7, the matrix M we are completing is no longer rank-deficient, so applying LRMC to

the original matrix completion problem cannot possibly succeed. Meanwhile, as already noted by

Ongie et al., lifting the problem into the tensorized domain does let us impute M in this high-rank

situation. We extend on this observation: at least with the rank-minimization algorithm we have

used, using the tensorized hitting subspace problem lets us impute M even more reliably.

Future Directions

It can be shown that the success of tensorized LRMC is contingent on some special properties

of the data. Specifically, if no more than k coordinates of each data point are observed, Ongie’s

method will not succeed at completing data drawn from an algebraic variety V unless the space

of pth degree homogeneous polynomials in the vanishing ideal of V is generated by polynomials

supported on nomore than k coordinates. However, while degree-of-freedom reasoning suggests

that the tensorized hitting subspace problemwill recover v(V) in more situations, little is currently

known about its precise limitations.
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