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Rational Isogenies

Let E1, E2 be two elliptic curves over a number field K . Write
GK := Gal(K/K ).

Definition
An isogeny φ : E1 → E2 is a non-constant morphism of curves which

maps OE1 to OE2 ;
⇔ induces a group homomorphism from E1(K ) to E2(K );
⇔ has finite kernel.

The degree of φ = | ker(φ)| = [K (E1) : φ∗K (E2)].
φ is said to be K -rational if it is compatible with the GK -action on
E1 and E2; that is, if the following diagram commutes for all σ ∈ GK :

E1 E2

E1 E2

φ

σ σ

φ
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Isogenies = Kernel

Fact

Let E/K be an elliptic curve over a number field. Then there is a bijection

{K -rational isogenies from E} ∼−→
{
GK -invariant finite subgroups of E (K )

}
φ 7−→ ker φ

φC : E → E/C ←− [ C .

Slogan

You can identify an isogeny with its kernel.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Isogenies = Kernel

Fact

Let E/K be an elliptic curve over a number field. Then there is a bijection

{K -rational isogenies from E} ∼−→
{
GK -invariant finite subgroups of E (K )

}
φ 7−→ ker φ

φC : E → E/C ←− [ C .

Slogan

You can identify an isogeny with its kernel.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Isogenies = Kernel

Fact

Let E/K be an elliptic curve over a number field. Then there is a bijection

{K -rational isogenies from E} ∼−→
{
GK -invariant finite subgroups of E (K )

}
φ 7−→ ker φ

φC : E → E/C ←− [ C .

Slogan

You can identify an isogeny with its kernel.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Isogenies = Kernel

Fact

Let E/K be an elliptic curve over a number field. Then there is a bijection

{K -rational isogenies from E} ∼−→
{
GK -invariant finite subgroups of E (K )

}
φ 7−→ ker φ

φC : E → E/C ←− [ C .

Slogan

You can identify an isogeny with its kernel.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

The Dream

Goal
“Understand rational isogenies.”

Since we can identify isogenies with their kernels, which are finite abelian
groups, which break up as a direct sum of cyclic groups, the above goal
reduces to

Reduced Goal
“Understand rational isogenies with cyclic kernel.”

Call these cyclic K -isogenies.
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The Dream made precise

Question
For a number field K , what possible degrees arise as the degree of a
K -rational cyclic isogeny between elliptic curves over K?

Let’s call this set of possible degrees IsogCyclicDeg(K ).

We write IsogPrimeDeg(K ) for the primes in this set, and call them
isogeny primes for K .

A priori these could be infinite sets.
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The Theorems of Mazur and Kenku

Theorem (Mazur, 1978)

IsogPrimeDeg(Q) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163} .

Theorem (Kenku, 1982)

IsogCyclicDeg(Q) = {1 ≤ N ≤ 19} ∪ {21, 25, 27, 37, 43, 67, 163} .

Barry C. Mazur Monsur A. Kenku
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Beyond Mazur’s Theorem

Question

Can one write down IsogPrimeDeg(K ) for any other number field K?

Theorem (B., 2021)

Assuming GRH, we have the following.

IsogPrimeDeg(Q(
√
7)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−10)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
5)) = IsogPrimeDeg(Q) ∪ {23, 47}
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Algorithm for Quadratic Isogeny Primes

Actually this is a corollary of the following.

Algorithm (B., 2021)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then there is an algorithm which computes a superset of
IsogPrimeDeg(K )* as the union of three sets:

IsogPrimeDeg(K ) ⊆ PreTypeOneTwoPrimes(K ) ∪ TypeOnePrimes(K )

∪ TypeTwoPrimes(K ).

(*: With these assumptions, this is a finite set, as explained in next section)

Remark

If K is imaginary quadratic of class number one, then IsogPrimeDeg(K )
is infinite because of complex multiplication.
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Preview of the Main Calling Function

Sage implementation available at

github.com/barinderbanwait/quadratic_isogeny_primes

We’ll have a live-demo of the command-line tool after giving an overview
of the algorithm.

github.com/barinderbanwait/quadratic_isogeny_primes
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The isogeny character

Let E/K be an elliptic curve over a number field which admits a
K -rational p-isogeny. Let λ denote the isogeny character:

λ : GK −→ AutV (K ) ∼= F×p ,

where V is the kernel of the isogeny, which can be thought of as a 1d
GK -representation.

In 1993, Momose classified isogenies into three types.
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Momose’s Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant C0 = C0(K ) such
that for any prime p > C0, and for any elliptic curve admitting a
K -rational p-isogeny, the isogeny character λ falls into one of the
following three types:

Type 1. λ12 or (λθ−1
p )12 is unramified (θp =mod-p cyclotomic character).

Type 2. λ12 = θ6
p and p ≡ 3 (mod 4).

Type 3. K contains the Hilbert class field HL of an imaginary quadratic
field L. The rational prime p splits in L:

pOL = pp̄.

For any prime q of K prime to p,

λ12(Frobq) = α12 (mod p)

for any α ∈ K× with αOL = NmK/L(q).
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PreTypeOneTwoPrimes

Slogan

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K )
outside of which the isogeny character is of Type 1 or 2.

From Momose’s Theorem, we could take

PreTypeOneTwoPrimes(K ) = {p prime : p < C0} ,

but we show that it’s possible to take the primes dividing a handful of
explicitly computable integers.

Theorem (Momose, Theorem B)

Let K be a quadratic field which is not an
imaginary quadratic field of class number 1.
Then IsogPrimeDeg(K ) is finite.

Henceforth, when we say an isogeny-finite K ,
we will mean K as above.

Fumiyuki Momose



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

PreTypeOneTwoPrimes

Slogan

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K )
outside of which the isogeny character is of Type 1 or 2.

From Momose’s Theorem, we could take

PreTypeOneTwoPrimes(K ) = {p prime : p < C0} ,

but we show that it’s possible to take the primes dividing a handful of
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Drilling into Momose’s proof I - Finitely many εs

By class field theory, we can identify λ as a character of IK (p), ideals of
K coprime to p.

For quadratic K , we can identify ε as a pair (a, b) := a + bσ, for σ the
non-trivial Galois element.
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Momose’s Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists an effective constant
C0 = C0(K ) such that for any prime p > C0, and for any elliptic curve
admitting a K -rational p-isogeny, the isogeny character λ falls into one of
the following three types:
Type 1. λ12 or (λθ−1

p )12 is unramified.

Type 2. λ12 = θ6
p and p ≡ 3 (mod 4).

Type 3. K contains the Hilbert class field HL of an imaginary quadratic
field. The rational prime p splits in L:

pOL = pp̄.

For any prime q of K prime to p,

λ12(Frobq) = α12 (mod p)

for any α ∈ K× with αOL = Nmk/L(q).
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Momose’s Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists an effective constant
C0 = C0(K ) such that for any prime p > C0, and for any elliptic curve
admitting a K -rational p-isogeny, the isogeny character λ falls into one of
the following three types:
Type 1. λ12 or (λθ−1

p )12 is unramified. ⇐ ε = (0, 0) or (12, 12)

Type 2. λ12 = θ6
p and p ≡ 3 (mod 4). ⇐ ε = (6, 6)

To make this explicit ...

For every other ε, find the possible isogeny primes which have an isogeny
character acting via ε.
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Proposition (B.)

If E has a K -rational p-isogeny with character acting through ε, then for
all good* primes q of K , p must divide one of the following:

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C (ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
).

(Good means split in K , and non-principal if K is imaginary.)

ABC (ε, q) := Supp(A(ε, q)) ∪ Supp(B(ε, q)) ∪ Supp(C (ε, q)).

PreTypeOneTwoPrimes(K ) :=
⋃
ε

⋂
q∈Aux

ABC (ε, q)

for Aux a finite set of good auxiliary primes.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Proposition (B.)

If E has a K -rational p-isogeny with character acting through ε, then for
all good* primes q of K , p must divide one of the following:

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C (ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
).

(Good means split in K , and non-principal if K is imaginary.)

ABC (ε, q) := Supp(A(ε, q)) ∪ Supp(B(ε, q)) ∪ Supp(C (ε, q)).

PreTypeOneTwoPrimes(K ) :=
⋃
ε

⋂
q∈Aux

ABC (ε, q)

for Aux a finite set of good auxiliary primes.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Proposition (B.)

If E has a K -rational p-isogeny with character acting through ε, then for
all good* primes q of K , p must divide one of the following:

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C (ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
).

(Good means split in K , and non-principal if K is imaginary.)

ABC (ε, q) := Supp(A(ε, q)) ∪ Supp(B(ε, q)) ∪ Supp(C (ε, q)).

PreTypeOneTwoPrimes(K ) :=
⋃
ε

⋂
q∈Aux

ABC (ε, q)

for Aux a finite set of good auxiliary primes.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Proposition (B.)

If E has a K -rational p-isogeny with character acting through ε, then for
all good* primes q of K , p must divide one of the following:

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C (ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
).

(Good means split in K , and non-principal if K is imaginary.)

ABC (ε, q) := Supp(A(ε, q)) ∪ Supp(B(ε, q)) ∪ Supp(C (ε, q)).

PreTypeOneTwoPrimes(K ) :=
⋃
ε

⋂
q∈Aux

ABC (ε, q)

for Aux a finite set of good auxiliary primes.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Proposition (B.)

If E has a K -rational p-isogeny with character acting through ε, then for
all good* primes q of K , p must divide one of the following:

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C (ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
).

(Good means split in K , and non-principal if K is imaginary.)

ABC (ε, q) := Supp(A(ε, q)) ∪ Supp(B(ε, q)) ∪ Supp(C (ε, q)).

PreTypeOneTwoPrimes(K ) :=
⋃
ε

⋂
q∈Aux

ABC (ε, q)

for Aux a finite set of good auxiliary primes.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

Proposition (B.)

If E has a K -rational p-isogeny with character acting through ε, then for
all good* primes q of K , p must divide one of the following:

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C (ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
).

(Good means split in K , and non-principal if K is imaginary.)

ABC (ε, q) := Supp(A(ε, q)) ∪ Supp(B(ε, q)) ∪ Supp(C (ε, q)).

PreTypeOneTwoPrimes(K ) :=
⋃
ε

⋂
q∈Aux

ABC (ε, q)

for Aux a finite set of good auxiliary primes.



Isogenies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo Weeding WIP

A quick glance at the implementation
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Condition CC ...

Condition CC (Momose + ε)

Let K be an isogeny-finite quadratic field, and E/K an elliptic curve
admitting a K -rational p-isogeny, with p of Type 2. Let q be a rational
prime < p/4 such that q2 + q + 1 6≡ 0 (mod p). Then the following
implication holds:

if q splits or ramifies in K , then q does not split in Q(
√
−p).

Dorian Goldfeld
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Determining the Type 2 primes is harder for general K .

Larson and Vaintrob obtained a bound on these primes involving
"effectively computable absolute constants".

Eric Larson Dmitry Vaintrob

Question
Can we remove the "effectively computable absolute constants"?
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Proposition (B.)

Assume GRH. Let K be an isogeny-finite quadratic field, and E/K an
elliptic curve possessing a K -rational p-isogeny, for p a Type 2 prime.
Then p satisfies

p ≤ (16 log p + 16 log(12∆K ) + 26)4.

In particular, there are only finitely many primes p as above.

Strategy

Check all primes up to this bound for whether they satisfy condition CC
or not.
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Live Demo
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IsogPrimeDeg(Q(
√
5))
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To determine:

{23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 79} .

i.e. for each p in this set, determine whether the modular curve X0(p)
admits any non-cuspidal Q(

√
5)-rational points.

X0(23) does admit such points:

This method also works for 47. But it doesn’t work for the other cases.

All of these primes are such that genus(X0(p)) ≤ 5.
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Quadratic Points of Low-genus modular curves

Peter J. Bruin

Hyperelliptic modular curves X0(N)
and isogenies of elliptic curves over

quadratic fields, 2015

Filip Najman

Ekin Özman

Quadratic points on modular curves,
2019

Samir Siksek

Josha Box

Quadratic points on modular curves
with infinite Mordell-Weil group,

2021
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Summary

Using their results, we can rule out the other values to conclude that

IsogPrimeDeg(Q(
√
5)) = IsogPrimeDeg(Q) ∪ {23, 47} .

One similarly shows

IsogPrimeDeg(Q(
√
7)) = IsogPrimeDeg(Q).

IsogPrimeDeg(Q(
√
−10)) = IsogPrimeDeg(Q).

See the final section of the paper for the details.
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Further Avenues
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Working on determining
IsogCyclicDeg(K ) for certain K s
with Oana Adascalitei in Boston,
USA, and Filip Najman in Zagreb,
Croatia.

Working on extending the methods
to cubic and higher degree number
fields with Maarten Derickx in Den
Haag, The Netherlands.

I’ll be giving a live demo of our
latest algorithm on a cubic field at
my VaNTAGe seminar talk on June
29th:
https://sites.google.com/
view/vantageseminar

https://sites.google.com/view/vantageseminar
https://sites.google.com/view/vantageseminar
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Working on determining
IsogCyclicDeg(K ) for certain K s
with Oana Adascalitei in Boston,
USA, and Filip Najman in Zagreb,
Croatia.

Working on extending the methods
to cubic and higher degree number
fields with Maarten Derickx in Den
Haag, The Netherlands.

I’ll be giving a live demo of our
latest algorithm on a cubic field at
my VaNTAGe seminar talk on June
29th:
https://sites.google.com/
view/vantageseminar

https://sites.google.com/view/vantageseminar
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Thanks for listening!
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