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Let £;, E; be two elliptic curves over a number field K. Write
Gk = Gal(K/K).
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Rational Isogenies

Let £;, E; be two elliptic curves over a number field K. Write
Gk := Gal(K/K).

An isogeny ¢ : E; — E; is a non-constant morphism of curves which

maps Og, to Og,; . .
< induces a group homomorphism from E;(K) to Ex(K);
< has finite kernel.
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Rational Isogenies

Let £;, E; be two elliptic curves over a number field K. Write
Gk := Gal(K/K).

Definition

An isogeny ¢ : E; — E; is a non-constant morphism of curves which
maps Og, to Og,;
< induces a group homomorphism from E;(K) to Ex(K);
< has finite kernel.

The degree of ¢ = | ker(¢)| = [K(E1) : ¢*K(E)]-
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Rational Isogenies

Let £;, E; be two elliptic curves over a number field K. Write
Gk := Gal(K/K).

Definition

An isogeny ¢ : E; — E; is a non-constant morphism of curves which
maps Og, to Og,; - -
< induces a group homomorphism from E;(K) to Ex(K);
< has finite kernel.
The degree of ¢ = |ker(¢)| = [K(E1) : ¢*K(E)].
¢ is said to be K-rational if it is compatible with the Gk-action on
E; and E; that is, if the following diagram commutes for all o € Gg:

A
Ul ¢ l”

E1*>E2




Isogenies
[e]e] lelelele]e]e)

Isogenies = Kernel




Isogenies
[e]e] lelelele]e]e)

Isogenies = Kernel

Let E/K be an elliptic curve over a number field. Then there is a bijection
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Isogenies = Kernel

Let E/K be an elliptic curve over a number field. Then there is a bijection

{K-rational isogenies from E} = { Gx-invariant finite subgroups of E(K)}
¢ — ker ¢
¢c: E— E/C<+— C.
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Isogenies = Kernel

Let E/K be an elliptic curve over a number field. Then there is a bijection

{K-rational isogenies from E} = { Gx-invariant finite subgroups of E(K)}
¢ — ker ¢
¢c: E— E/C<+— C.

Slogan
You can identify an isogeny with its kernel.
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Since we can identify isogenies with their kernels, which are finite abelian
groups, which break up as a direct sum of cyclic groups,
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The Dream

“Understand rational isogenies.”

Since we can identify isogenies with their kernels, which are finite abelian
groups, which break up as a direct sum of cyclic groups, the above goal
reduces to

Reduced Goal

“Understand rational isogenies with cyclic kernel.”

Call these cyclic K-isogenies.
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For a number field K, what possible degrees arise as the degree of a
K -rational cyclic isogeny between elliptic curves over K ?
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For a number field K, what possible degrees arise as the degree of a
K -rational cyclic isogeny between elliptic curves over K ?

Let’s call this set of possible degrees IsogCyclicDeg(K).

We write IsogPrimeDeg(K) for the primes in this set, and call them
isogeny primes for K.
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The Dream made precise

For a number field K, what possible degrees arise as the degree of a
K -rational cyclic isogeny between elliptic curves over K ?

Let’s call this set of possible degrees IsogCyclicDeg(K).

We write IsogPrimeDeg(K) for the primes in this set, and call them
isogeny primes for K.

A priori these could be infinite sets.
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The Theorems of Mazur and Kenku

Theorem (Mazur, 1978)

IsogPrimeDeg(Q) = {2,3,5,7,11,13,17, 19, 37, 43,67, 163} .

Barry C. Mazur Monsur A. Kenku
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The Theorems of Mazur and Kenku

Theorem (Mazur, 1978)

IsogPrimeDeg(Q) = {2,3,5,7,11,13,17,19,37, 43,67, 163} .

Theorem (Kenku, 1982)

IsogCyclicDeg(Q) = {1 < N < 19} U {21, 25,27,37,43,67,163}.

Barry C. Mazur Monsur A. Kenku
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Beyond Mazur's Theorem

Can one write down lsogPrimeDeg(K) for any other number field K?

Theorem (B., 2021)
Assuming GRH, we have the following.

IsogPrimeDeg(Q(V/7)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(v/—10)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(v/5)) = IsogPrimeDeg(Q) U {23, 47}
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Actually this is a corollary of the following.

Algorithm (B., 2021)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then there is an algorithm which computes a superset of
IsogPrimeDeg(K)™ as the union of three sets:

(*: With these assumptions, this is a finite set, as explained in next section)
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number 1. Then there is an algorithm which computes a superset of
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(*: With these assumptions, this is a finite set, as explained in next section)
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Algorithm for Quadratic Isogeny Primes

Actually this is a corollary of the following.

Algorithm (B., 2021)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then there is an algorithm which computes a superset of
IsogPrimeDeg(K)" as the union of three sets:

IsogPrimeDeg(K) C PreTypeOneTwoPrimes(K) U TypeOnePrimes(K)
U TypeTwoPrimes(K).

(*: With these assumptions, this is a finite set, as explained in next section)

If K is imaginary quadratic of class number one, then lsogPrimeDeg(K)
is infinite because of complex multiplication.
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Preview of the Main Calling Function

t
.format(aux_prime_count))

aux_prin
op_only j)
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Preview of the Main Calling Function

Sage implementation available at

github.com/barinderbanwait/quadratic_isogeny_primes
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Preview of the Main Calling Function

Sage implementation available at

github.com/barinderbanwait/quadratic_isogeny_primes

We'll have a live-demo of the command-line tool after giving an overview
of the algorithm.


github.com/barinderbanwait/quadratic_isogeny_primes
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Let E/K be an elliptic curve over a number field which admits a
K-rational p-isogeny.
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Let E/K be an elliptic curve over a number field which admits a
K-rational p-isogeny. Let A\ denote the isogeny character:

A: Gk — AutV(K) =F),

where V is the kernel of the isogeny, which can be thought of as a 1d
Gk-representation.
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The isogeny character

Let E/K be an elliptic curve over a number field which admits a
K-rational p-isogeny. Let A\ denote the isogeny character:

A: Gk — AutV(K) =F),

where V is the kernel of the isogeny, which can be thought of as a 1d
Gk-representation.

Isogenies of prime degree over number fields

FUMIYUKI MOMOSE
Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan

Received 19 August 1993; accepted in final form 24 December 1993

In 1993, Momose classified isogenies into three types.
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant Co = Co(K) such
that for any prime p > Co, and for any elliptic curve admitting a
K-rational p-isogeny, the isogeny character \ falls into one of the
following three types:
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant Co = Co(K) such
that for any prime p > Co, and for any elliptic curve admitting a

K-rational p-isogeny, the isogeny character \ falls into one of the
following three types:

Type 1. X2 or (A0, ) is unramified (8, =mod-p cyclotomic character).
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Let K be a number field. Then there exists a constant Co = Co(K) such
that for any prime p > Co, and for any elliptic curve admitting a
K-rational p-isogeny, the isogeny character \ falls into one of the
following three types:

Type 1. X2 or (A0, ) is unramified (8, =mod-p cyclotomic character).
Type 2. A2 =05 and p = 3 (mod 4).
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant Co = Co(K) such

that for any prime p > Co, and for any elliptic curve admitting a

K-rational p-isogeny, the isogeny character \ falls into one of the

following three types:

Type 1. X2 or (A0, ) is unramified (8, =mod-p cyclotomic character).

Type 2. A2 =05 and p = 3 (mod 4).

Type 3. K contains the Hilbert class field H, of an imaginary quadratic
field L.
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant Co = Co(K) such
that for any prime p > Co, and for any elliptic curve admitting a

K-rational p-isogeny, the isogeny character \ falls into one of the
following three types:

Type 1. X2 or (A0, ) is unramified (8, =mod-p cyclotomic character).
Type 2. A2 =05 and p = 3 (mod 4).

Type 3. K contains the Hilbert class field H, of an imaginary quadratic
field L. The rational prime p splits in L:

pOL = pp.
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Momose's Classification of Isogenles into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant Co = Co(K) such
that for any prime p > Co, and for any elliptic curve admitting a
K-rational p-isogeny, the isogeny character \ falls into one of the
following three types:

Type 1. X2 or (A0, ) is unramified (8, =mod-p cyclotomic character).
Type 2. A2 =05 and p = 3 (mod 4).
Type 3. K contains the Hilbert class field H, of an imaginary quadratic
field L. The rational prime p splits in L:
pOL = pp.
For any prime q of K prime to p,

A2 (Frobg) = a'? (mod p)

for any o € K* with aOp = Nmy,,(q).
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Fumiyuki Momose
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PreTypeOneTwoPrimes

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K)
outside of which the isogeny character is of Type 1 or 2.

Fumiyuki Momose
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PreTypeOneTwoPrimes

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K)

outside of which the isogeny character is of Type 1 or 2.

From Momose's Theorem, we could take

PreTypeOneTwoPrimes(K) = {p prime : p < Gy},

-

Fumiyuki Momose
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PreTypeOneTwoPrimes

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K)
outside of which the isogeny character is of Type 1 or 2.

From Momose's Theorem, we could take
PreTypeOneTwoPrimes(K) = {p prime : p < Gy},

but we show that it's possible to take the primes dividing a handful of
explicitly computable integers.

=l

Fumiyuki Momose
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PreTypeOneTwoPrimes

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K)
outside of which the isogeny character is of Type 1 or 2.

From Momose's Theorem, we could take
PreTypeOneTwoPrimes(K) = {p prime : p < Gy},

but we show that it's possible to take the primes dividing a handful of
explicitly computable integers.

Theorem (Momose, Theorem B)

Let K be a quadratic field which is not an
imaginary quadratic field of class number 1.
Then lsogPrimeDeg(K) is finite.

=] A ————
Fumiyuki Momose
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PreTypeOneTwoPrimes

If K is a quadratic field which is not imaginary quadratic of class number
one, then there is a finite set of primes PreTypeOneTwoPrimes(K)
outside of which the isogeny character is of Type 1 or 2.

From Momose's Theorem, we could take
PreTypeOneTwoPrimes(K) = {p prime : p < Gy},

but we show that it's possible to take the primes dividing a handful of
explicitly computable integers.

Theorem (Momose, Theorem B)

Let K be a quadratic field which is not an
imaginary quadratic field of class number 1.
Then lsogPrimeDeg(K) is finite.

Henceforth, when we say an isogeny-finite K,

we will mean K as above. Fumiyuki Momose
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Drilling into Momose's proof | - Finitely many es

By class field theory, we can identify A as a character of Ix(p), ideals of
K coprime to p.



PreTypeOneTwoPrimes
0O000e0000000

Drilling into Momose's proof | - Finitely many es

By class field theory, we can identify A as a character of Ix(p), ideals of
K coprime to p.

LEMMA 1. Assume that k is a Galois extension of Q and that the rational
prime p is unramified in k. Then for a fixed prime p of k lying over p, we have
integers a,, 0 < a, < 12, for o€ Gal(k/Q) such that

23(@) =o' (modp)

for e =X, a,0 and ack™ prime to p.
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Drilling into Momose's proof | - Finitely many es

By class field theory, we can identify A as a character of Ix(p), ideals of
K coprime to p.

LEMMA 1. Assume that k is a Galois extension of Q and that the rational
prime p is unramified in k. Then for a fixed prime p of k lying over p, we have
integers a,, 0 < a, < 12, for o€ Gal(k/Q) such that

2%(@) = (modp)

for e =X, a,0 and ack™ prime to p.

For quadratic K, we can identify € as a pair (a, b) := a+ bo, for o the
non-trivial Galois element.
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Drilling into Momose's proof | - Finitely many es

By class field theory, we can identify A as a character of Ix(p), ideals of
K coprime to p.

LEMMA 1. Assume that k is a Galois extension of Q and that the rational
prime p is unramified in k. Then for a fixed prime p of k lying over p, we have
integers a,, 0 < a, < 12, for o€ Gal(k/Q) such that

A?((@) =a (modp)
for e =X, a,0 and ack™ prime to p.

For quadratic K, we can identify € as a pair (a, b) := a+ bo, for o the
non-trivial Galois element.

REMARK 1. The integers ay’s take the values 0,12;4,8 (only if the modular

invariant j(E) = 0 (mod p) and p = 2 (mod 3)); 6 (only if j(E) = 1728 (mod p)
and p =3 (mod 4) (cf. [Mal], Chap. 3; [Ma2]).
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Note that the three pairs (0,0), (12, 12),(6,6) are not declared here,
because ...
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Momose's Classification of Isogenles into three types

Theorem (Momose)

Let K be a number field. Then there exists an effective constant
Co = Co(K) such that for any prime p > Co, and for any elliptic curve

admitting a K-rational p-isogeny, the isogeny character \ falls into one of
the following three types:

Type 1. A2 or (A0, 1)'? is unramified.
Type 2. \1? = 02 and p = 3 (mod 4).

Type 3. K contains the Hilbert class field H, of an imaginary quadratic
field. The rational prime p splits in L:

pOL = pp.
For any prime q of K prime to p,

A2(Frobg) = a'? (mod p)

for any o € K* with aOp = Nmy/,(q).
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ose's Classification of Isogenles into three types

Theorem (Momose)

Let K be a number field. Then there exists an effective constant
Co = Co(K) such that for any prime p > Co, and for any elliptic curve

admitting a K-rational p-isogeny, the isogeny character \ falls into one of
the following three types:

Type 1. A2 or (A0, 1)'? is unramified. < ¢ = (0,0) or (12,12)
Type 2. A2 = 0% and p = 3 (mod 4). < ¢ = (6,6)
Type 3. K contains the Hilbert class field H, of an imaginary quadratic
field. The rational prime p splits in L:
pOL = pp.
For any prime q of K prime to p,

A2(Frobg) = a'? (mod p)

for any o € K* with aOp = Nmy/,(q).
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists an effective constant

Co = Go(K) such that for any prime p > Cy, and for any elliptic curve
admitting a K-rational p-isogeny, the isogeny character \ falls into one of
the following three types:

Type 1. A2 or (A0, 1)'? is unramified. < ¢ = (0,0) or (12,12)
Type 2. X2 =05 and p =3 (mod 4). < €= (6,6)

Type 3. tains the Hilbert class field H, of an imaginary qu

ional prime p splits in L:

field.

For any prime q of K pri

(Frobg) = a*? (mod p

a € K* with aO; = Nmk/L(q).
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists an effective constant

Co = Go(K) such that for any prime p > Co, and for any elliptic curve
admitting a K-rational p-isogeny, the isogeny character \ falls into one of
the following three types:

Type 1. A'? or (A0, 1)'? is unramified. < ¢ = (0,0) or (12,12)

Type 2. A2 =08 and p = 3 (mod 4). < ¢ = (6,6)

To make this explicit ...

| A\

For every other ¢, find the possible isogeny primes which have an isogeny
character acting via e.
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Proposition (B.)

If E has a K-rational p-isogeny with character acting through ¢, then for
all good” primes q of K, p must divide one of the following:
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Proposition (B.)

If E has a K-rational p-isogeny with character acting through ¢, then for
all good” primes q of K, p must divide one of the following:

A(e,q) := Nmg g(a® — 1);
B(e, q) := Nmg g(a — ¢*2)
C(e, q) == lem({Nmyg),0(a — B*2M%) | B is a Frobenius root over Fq}).
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Proposition (B.)

If E has a K-rational p-isogeny with character acting through ¢, then for
all good” primes q of K, p must divide one of the following:

A(e,q) := Nmg g(a® — 1);
B(e, q) := Nmg g(a — ¢*2)
C(e, q) == lem({Nmyg),0(a — B*2M%) | B is a Frobenius root over Fq}).

(Good means split in K, and non-principal if K is imaginary.)



PreTypeOneTwoPrimes
000000000080

Proposition (B.)

If E has a K-rational p-isogeny with character acting through ¢, then for
all good” primes q of K, p must divide one of the following:

A(e,q) := Nmg g(a® — 1);
B(e, q) := Nmg g(a — ¢*2)
C(e, q) == lem({Nmyg),0(a — B*2M) | B is a Frobenius root over Fy}).

(Good means split in K, and non-principal if K is imaginary.)

ABC(e,q) := Supp(A(e,q)) U Supp(B(e,q)) U Supp(C(e, q)).
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Proposition (B.)

If E has a K-rational p-isogeny with character acting through ¢, then for
all good” primes q of K, p must divide one of the following:

A(e,q) := Nmg g(a® — 1);
B(e, q) := Nmg g(a — ¢*2)
C(e, q) == lem({Nmyg),0(a — B*2M) | B is a Frobenius root over Fy}).

(Good means split in K, and non-principal if K is imaginary.)

ABC(e,q) := Supp(A(e,q)) U Supp(B(e,q)) U Supp(C(e, q)).

PreTypeOneTwoPrimes(K) := U ﬂ ABC (e, q)
€ qEAux
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Proposition (B.)

If E has a K-rational p-isogeny with character acting through ¢, then for
all good” primes q of K, p must divide one of the following:

A(e,q) := Nmg g(a® — 1);
B(e, q) := Nmg g(a — ¢*2)
C(e, q) == lem({Nmyg),0(a — B*2M) | B is a Frobenius root over Fy}).

(Good means split in K, and non-principal if K is imaginary.)

ABC(e,q) := Supp(A(e,q)) U Supp(B(e,q)) U Supp(C(e, q)).

PreTypeOneTwoPrimes(K) := U ﬂ ABC (e, q)
€ qEAux

for Aux a finite set of good auxiliary primes.
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A quick glance at the implementation

output_dict_AB = {}
E1GLEE (q q_class_group_order) .gens_reduced()
(alphas) , "q*q_class 0
ELGLE] alphas[0]
rat_gq ZZ(q.norm())
rat_q.is_prime(),
eps epsilons:
alpha_to eps = group_ring exp(alpha,eps)
A = (alpha_to eps - 1).norm()
B = (alpha_to_eps (rat q ( q_class_group order))).norm())
output dict AB[eps lcm(A,B)
output_dict AB

frob_poly frob_polys to loop:
frob_poly.is irreducible():
frob_poly root field frob_poly.root field('a')
, K into KL, L into KL, K.composite fields(frob poly root field,

frob_poly root field IntegerRing()
roots of frob = frob_poly.roots(frob_poly root field)
betas = [r r.e roots_of_frob]

beta betas:
beta K:
eps epsilons:
N (group_ring_exp(alpha, eps) beta ( q_class_group_order)).al}
N ZZ(N)
output_dict_c[eps] lcm(output_dict_Cleps], N)

eps epsilons

N (K_into_KL(group_ring_exp(alpha, eps)) L_into KL(beta

N ZZ(N)

output dict C[eps] lem(output_dict Cleps], N)
output_dict C
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Condition CC ...

Condition CC (Momose + ¢)

Let K be an isogeny-finite quadratic field, and E/K an elliptic curve
admitting a K-rational p-isogeny, with p of Type 2. Let q be a rational
prime < p/4 such that g> + q + 1 # 0 (mod p). Then the following
implication holds:

if q splits or ramifies in K, then q does not split in Q(v/—p).

Appendix. An Analogue of the Class Number One Problem
By D. Goldfeld

1. Let K be an algebraic number field of finite degree over Q with discriminant k,
and let S be a finite set of rational primes. Define #(K, §) to be the set of rational
integers N satisfying the conditions:

— N is a discriminant of a quadratic field and for all primes 1¢S, I<|N|/4, if |
splits completely in K, then | doesn’t split in Q(}/ = N).
In the case that K is equal to Q or a quadratic ficld, we shall show that A"(K, S)isa
finite set. The method of proof, however, is ineffective and all that can be deduced is

Dorian Goldfeld
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Generalises Mazur's Claim

gettyrmipe

Barry C. Mazur
receives National
Medal of Science from
US President Barack
H. Obama

Claim. If the above case occurs then for all odd primes p < N /4 we have (:}) =—1

To conclude our theorem, we shall now prove that the above claim implies that
Q()/ —N) has class number 1 and hence (by Baker-Stark-Heegner [3, 37, 38]) we
have N =11, 19, 43, 67, or 163 (ignoring the genus 0 cases).

Since N= —1 mod 4, quadratic reciprocity applied to (7.1) implies that for
2<p<N/4, p remains prime in Q(}/ —N).

Thus all ideals I of odd norm < N/4 are principal in the ring of integers of
Q(]/ -N ). To be sure, if we had the stronger assertion that all ideals of norm < N/4
were principal, then Q(l/iN) would have class number 1 by Minkowski's
theorem: the absolute value of the discriminant of Q(}/ — N) is N; the Minkowski
constant is 2/n; and 2/7:41/17\7<N/4 for N=11. We shall prove this stronger
assertion. If 2 does not split in Q(}/ — N), there is nothing to prove. Suppose, then,
that 2 does split, in which case N= —1 or 7 mod 16. We must show that one (and
hence both) of the primes of norm 2 are principal. If N = — 1 mod 16, consider the
element x=(3+41/— N)/2. One sees that the norm of « is twice an odd number;
hence (x)=p - I where p is one of the primes of norm 2, and I is an “odd” ideal, with
norm (9+ N)/8. Since N =11, the norm of I is less than N/4, and therefore I is
principal. Consequently so is p. If N =7 mod 16, take the element a =(1+7/ — N)/2,
and repeat the above argument.
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"effectively computable absolute constants".

Eric Larson Dmitry Vaintrob

Theorem 7.9. Under GRH, there are effectively computable absolute constants ca, c3,
and ¢4 such that we can take in Theorems 6.4 and 5.16

H £ < exp({';" . (RK nE 2 (log AK)Z))
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Determining the Type 2 primes is harder for general K.

Larson and Vaintrob obtained a bound on these primes involving
"effectively computable absolute constants".

Eric Larson Dmitry Vaintrob

Theorem 7.9. Under GRH, there are effectively computable absolute constants ca, c3,
and ¢4 such that we can take in Theorems 6.4 and 5.16

H L < exp(c;" . (RK - 4+ 2 - (log AK)Z))

teSk

Can we remove the "effectively computable absolute constants"?
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Proposition (B.)

Assume GRH. Let K be an isogeny-finite quadratic field, and E/K an
elliptic curve possessing a K-rational p-isogeny, for p a Type 2 prime.
Then p satisfies

p < (16log p + 16log(12Ak) + 26)*.

In particular, there are only finitely many primes p as above.
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Proposition (B.)

Assume GRH. Let K be an isogeny-finite quadratic field, and E/K an
elliptic curve possessing a K-rational p-isogeny, for p a Type 2 prime.
Then p satisfies

p < (16log p + 16log(12Ak) + 26)*.

In particular, there are only finitely many primes p as above.

| A

Strategy

Check all primes up to this bound for whether they satisfy condition CC
or not.
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(pBeg)

= DoTETy T o e (p,cond) ;
output e_range(25) (p = pBeg*blockSize, (pBeg+1)*blockSize
cond (p,D);
(cond, (p)));

p_int
(checktypetw
output .
(typetwobound/blockSize) ;
(checktypetwo, [ 1);




Live Demo
[

Live Demo




IsogPrimeDeg(Q(v/5))




Weeding
0000
To determine:

{23,29,31,41,47,53,59,61,71,73,79} .



To determine:
{23,29,31,41,47,53,59,61,71,73,79} .

i.e. for each p in this set, determine whether the modular curve Xo(p)
admits any non-cuspidal Q(+/5)-rational points.



To determine:
{23,29,31,41,47,53,59,61,71,73,79} .

i.e. for each p in this set, determine whether the modular curve Xo(p)
admits any non-cuspidal Q(+/5)-rational points.

Xo(23) does admit such points:



enies PreTypeOneTwoPrimes TypeTwoPrimes Live Demo

To determine:
{23,29,31,41,47,53,59,61,71,73,79} .

i.e. for each p in this set, determine whether the modular curve Xo(p)
admits any non-cuspidal Q(+/5)-rational points.

Xo(23) does admit such points:

COMPUTER + ALGEBRA

Type ? for help. Type <Ctrl>-D to quit.
R<x> := PolynomialRing(Rationals());

K<a> := NumberField(R![-1, -1, 1]);
N:=23;
X := SmallModularCurve(N,K);
RationalPoints(X : Bound:=10);
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To determine:
{23,29,31,41,47,53,59,61,71,73,79} .

i.e. for each p in this set, determine whether the modular curve Xo(p)
admits any non-cuspidal Q(+/5)-rational points.

Xo(23) does admit such points:

COMPUTER + ALGEBRA

Type ? for help. Type <Ctrl>-D to quit.
R<x> := PolynomialRing(Rationals());

K<a> := NumberField(R![-1, -1, 1]);
N:=23;
X := SmallModularCurve(N,K);
RationalPoints(X : Bound:=10);
@(1:0:0), (1:1:0), (-3 :23*% -26: 1), (-3: -3 :1) @}

This method also works for 47. But it doesn't work for the other cases.

All of these primes are such that genus(Xo(p)) < 5.
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Ekin Ozman Samir Siksek

Quadratic points on modular curves
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Summary

Using their results, we can rule out the other values to conclude that

IsogPrimeDeg(Q(v/5)) = IsogPrimeDeg(Q) U {23,47} .

One similarly shows

IsogPrimeDeg(Q(V7)) = IsogPrimeDeg(Q).
IsogPrimeDeg(Q(v/'—10)) = IsogPrimeDeg(Q).

See the final section of the paper for the details.
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Working on determining
IsogCyclicDeg(K) for certain Ks
with Oana Adascalitei in Boston,
USA, and Filip Najman in Zagreb,
Croatia.

Working on extending the methods
to cubic and higher degree number
fields with Maarten Derickx in Den
Haag, The Netherlands.

I'll be giving a live demo of our
latest algorithm on a cubic field at
my VaNTAGe seminar talk on June
29th:

https://sites.google.com/ \/a N TAG e

vi ew/vant ageseminar avirtual math seminar on open conjectures in

number theory and arithmetic geometry
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