
Algorithms for distance computations
between 3-RPR con�gurations

Aditya Kapilavai
Institute of Discrete Mathematics and Geometry

E�ective Methods in Algebraic Geometry (MEGA 2021),
UiT – The Arctic University of Norway, Norway.

7th − 11th June 2021.
(Online conference)



Introduction

R

P

R

3-RPR planar parallel manipulator

3-degrees of freedom

(2-translational and one

rotational).

Actuated by Prismatic

joints (P), while Revolute

joints (R) are passive.

Singularity condition (V3) for 3-RPR
A configuration is singular if and only if the carrier lines of the three legs

intersect in a common point or are parallel.



Review on distance metrics
According to Nawratil [7], the

distance between configurations

K and K′ of a 3-RPR

manipulator, which can even

di�er in their geometry (shape of

platform/base & length of the

legs), can be given as

d(K,K′)2 =
1
6

6∑
i=1
||k′i − ki||2

ki k′
i

where ki and k′i are the vectors of the six anchor points in the two

configurations K and K′.
This metric can be used to compute singularity distance as the global

minimizer of an optimization problem.



General problem formulation

Optimization problem: Computation of the closest point (w.r.t. the

metric d) on the singularity variety (V3) to the given non-singular

manipulator configuration.

The corresponding Lagrange function L reads

L : d2 − λV3 = 0

We compute the critical points of the Lagrange function L numerically by

using the homotopy continuation algorithms implemented in the so�ware

via Bertini [2].



Structural elements

Prismatic joint  Deformable 

                          line-segment

Base/Platform

Deformable bar structure

Deformable triangular plate

Undeformable plate

The combination of these di�erent structural elements result in nine

interpretations of a 3-RPR manipulator.



Interpretation table

How one can perform transformations
Structual elements made of deformable material (|,N,M)⇒ a�ine

transformation.

Platform/base consists of undeformable material (indicated by )⇒
Eucledian motion.



Limitations of Nawratil’s distance metric

It does not take in to account how the vertices are connected

combinatorially.

It does not consider the base and platform di�erent design options

respectively.

To overcome these limitations, according to [6] we will consider 3-RPR

planar parallel manipulator as a planar framework in the Euclidean plane

E2
and perform an algebraic approach to concepts from rigidity theory.



Notation used for 3-RPR as frameworks

An abstract graph G fixing the combinatorial structure.

Edge lengths between k1 and k2 are denoted by `ij ∈ R>0 with i < j.

G(k)k1

k2

k3

`12

We denote framework’s configuration by G(k)
Configuration of knots k := (k1, . . .k6) is composed of the

2-dimensional coordinate vectors ki of the knots Ki(i = 1, . . . 6).



Classi�cation of metrics

To measure the distance between two configurations of a 3-RPR, one can

distinguish two di�ernt types of metrics:

Extrinsic metric
The metric is based on the embedding of the framework into the Euclidean

plane. E.g. Nawratil’s distance metric [7].

Intrinsic metric
The metric is based on the inner geometry of the framework (i.e. length of

bars and shape of plates). E.g. for interpretation 1 it is the 3-dimensional

joint space (cf. Zein [8]).



Motivation for the research

The intrinsic metric is suited for computing the singularity distance.

(discussed later on).

In contrast, our motivation for dealing with extrinsic metrics is twofold;

they can be used to

Compute singularity-free spheres in the embedding space.

�antify the change in shape implied by variations of the inner

metric (sensitivity analysis, e.g. Caro et al. [3]).

On the other hand, for extrinsic metric we could solve the system of

equations using symbolic approaches e.g., (Gröbner basis method,

resultant based elimination) but for the case of intrinsic metric symbolic

approaches are not promising.



Extrinsic metrics between structural elements

Distance between oriented line-segments according to Chen and

Po�mann [4].

`ij
ki

k′
i kj

k′
j

`′ij

By considering a similarity transformation, the squared distance between

two oriented line-segments `ij = (ki,kj) and `′ij = (k′i,k′j) can be

computed as:

d(`ij, `′ij)
2 = 1

3

[
‖ki − k′i‖2 + ‖kj − k′j‖2 + (ki − k′i)

T (kj − k′j)
]
.



Extending the idea of Chen and Pottmann

ki kj

kk

k′
k

k′
j

k′
i

By considering an a�ine mapping, the squared distance between two

triangles Nijk = (ki,kj,kk) and N′ijk = (k′i,k′j,k′k) can be computed as:

d(Nijk,N
′
ijk)

2 = 1
6

[ ∑
x=i,j,k

‖kx − k′x‖2+

(ki − k′i)
T (kk − k′k) + (ki − k′i)

T (kj − k′j) + (kk − k′k)
T (kj − k′j)

]
.



Intrinsic metric - Strain energy between triangular plates

According to [6] the elastic strain energy U for the deformation of

triangular plate Nijk to the deformed triangular plate N′ijk can be

calculated as

U (Nijk,N
′
ijk) = VolNijk

1
2
eTMe with e =

(
εx , εy, 2γxy

)T
where εx , εy , are the Green-Lagrange (GL) normal strains respectively, and

γxy the GL shear strain.

VolNijk denotes the volume of the undeformed triangular plate and M
corresponds to the planar stress/strain constitutive matrix.



Intrinsic metric - Strain energy between bars

According to [6] the elastic Green-Lagrange strain energy between an

undeformed bar `ij and the deformed bar `′ij can be computed as

U (`ij, `
′
ij) =

A
8`3

ij

(
`
′2
ij − `2

ij

)2

where A is the cross sectional area of the undeformed bar.



Case study
Let us consider interpretation 3 where the base is made with undeformed

material ( ), and the platform is made with deformable material i.e.

pin-jointed triangular bar-structure (M).

We are considering a 1-parametric motion (parameter t) which is

discretized into a user defined number of poses.



Extrinsic metric

The extrinsic distance function is

dM(k,k′)2 =
1
6
∑
(ij)∈J

d
(
`ij, `

′
ij

)2

where J = {14, 25, 36, 45, 46, 56}.
The squared distance equals the mean of the squared distances between

corresponding structural elements.

The corresponding Lagrange optimization problem for interpretation 3

reads as follows:

L : dM(k,k′)2 − λV3 − µM = 0

where M = 0 is the additional side constraint restricting the deformation

of the base to the Euclidean motions.

Remark 1: Computations are based on the point based approach [5].



Intrinsic metric

The strain energy density function for interpretation 3 is

DM(k,k′) =
1
AL

∑
(ij)∈J

U (`ij, `
′
ij)

where L is the total length L =
∑

(ij)∈J `ij and J = {14, 25, 36, 45, 46, 56}.
Thus the strain energy density function equals the sum of strain energies

between corresponding structural elements that is divided by the

framework’s volume.

Remark 2: By replacing the leg lengths by the distance of corresponding

knots yields the dependence of DM(k,k′) on k and k′ respectively.



Further discussion on intrinsic metric

G(k) is a given undeformed configuration.

A configuration G(k′) is undeformed configuration⇔ DM(k,k′) = 0.

A configuration G(k′) is deformed configuration⇔ DM(k,k′) > 0.

For the computation of the closest singular configuration in terms of the

intrinsic metric, there is no need of a Lagrange function due to the

following result of [6].

The critical points of DM(k,k′) which correspond to deformed

configurations are singular. It can be shown [6] that the closest singularity

corresponds to a saddle point.



Separation of saddle con�gurations

Compute all the critical points using homotopy algorithm for

DM(k,k′) = 0.

The undeformed configurations are at the local minima of the total

elastic strain energy density (but not vice versa).

Critical points which are no local extrema, correspond to so-called

saddle configurations.

This separation can be done by second partial derivative test.

How to verify if G(k) is deformed into G(k′)?



Let us assume that G(k′) which belongs to the set of saddle points, yields

the minimal value of DM
, where G(k) is the given undeformed

configuration. Let us consider the below formulation

L
′
ij = `

′2
ij +m(`2

ij − `
′2
ij ) with m ∈ [0, 1] (1)

where Lij ′ is a path between given undeformed squared length `ij of the

given configuration and deformed squared length `ij
′

of the saddle

configuration.

Eq. (1) implies a user-homotopy (parameter m) where we track the

solution for G(k) (m = 1) which yields G(km). If the condition

G(km)
∣∣
m=0 = G(k′)

holds, then G(k′) is the closest singular configuration.



Algorithm’s Step 0: Source con�guration

Start Extrinsic metric: choose random set of complex knots

Generic 
critical points

  
Construct extrinsic/intrinsic metric distance function (based on the

chosen interpretation) 
Compute partial derivatives of L and        respectively

Intrinsic metric: choose random set of of complex edge lengths

Input

Output

Stop

MAPLE

 Configure input file settings example (e.g. type of homotopy, tracking
tolerances, end-game settings etc.) via MAPLE

BERTINI

▬



Keypoints

Remark 3: Note that solutions obtained from Step 0 are generic critical

points, only have to be computed once (for each of the di�erent extrinsic

and intrinsic metrics).

Limitation: Bertini is a numerical so�ware, and users do not know the

exact number of solutions for the system.

Remark 4: The coe�icient of partial derivatives are scaled between 0 and

1 for good accuracy.

Remark 5: For step 0, the number of paths to be tracked by standard

homotopy is given as nN , where n is the degree of equations and N is the

number of equations.



Algorithm’s Step 1: Seed con�guration

Start
Extrinsic metric: choose a random motion parameter, 

which induces the knots of seed configuration
Step 0 solutions are needed

Finite solutions
between Step 0 &

Step 1

For extrinsic metric, user-defined homotopy between source
configuration knots and seed configuration knots

For intrinsic metric, user-defined homotopy between source
configuration lengths and seed configuration lengths

Intrinsic metric: choose a random motion parameter, which 
induces the inner metric of the seed configuration 

Step 0 solutions are needed

Input

Output

Stop

Formulate the extrinsic/intrinsic distance functions
Compute the partial derivatives of  L and       respectively

M
A
PL

E

 Configure input file settings example (e.g. type of user homotopy,
tracking tolerances, end-game settings etc.) via MAPLE

BERTINI

▬



Keypoints

Remark 6: For the user-defined homotopy of Step 1, we use the simplest

possible path in C12
and track the solutions of Step 0.

Remark 7: In the case of an intrinsic metric, while doing user-homotopy,

the motion parameter appears inside the square root.

E.g. ji =
√

C2
i + t (`2

i − C2
i ) where is t is the motion parameter.

Parameter homotopy approach only works if the parameterized system is

analytic.

We solved the issue of Remark 7 by doubling technique. This approach

doubles the system of equations, and we have to pay the price of

computational time and extra solutions.



Algorithm’s Step 2: Paramotopy

Start For both extrinsic/intrinsic metrics: real interval for 
1-parametric motion and the solutions obtained in Step 1

Critical points in each
 pose of the discretized

 1-parametric motion

Set up the corresponding extrinsic/intrinsic distance functions
Compute partial derivatives of L and        respectively

Input

Output

Stop

PARAMOTOPY

▬



Post processing of saddle con�gurations

Start 1-parametric motion and critical points

Intrinsic singularity distance

Sort out saddle configurations G(k') and sort them w.r.t.       (k,k')

Input

MAPLE

Set up system for user homotopy if G(k) is deformed into G(k') by  
 Eq. (1) of slide 20

MAPLE

BERTINI
User-homotopy

Stop

Output

while not[ G(km)|m=1 = G(k) and G(km)|m=0 = G(k') ]
 

▬



Computational results - comparison

For interpretation 3 for Step 0 (Source configuration), the numerical

example is taken from [7].

Extrinisic metric Intrinsic metric

Type of homotopy Regeneration Multi-homogeneous

Generic solutions 80 18 238

Total paths tracked 9 567 46 656

Number of equations 12 12

Gröbner basis 80 –

Note: The number of paths that have to be tracked for extrinsic metric

using multi-homogeneous homotopy are 2 361 960.



Computational results - comparison



Conclusions

We presented the elements required to construct extrinsic and

intrinsic metrics for di�erent interpretations of 3-RPR manipulator.

We solved an optimization problem using the metric constructions

and computed the singularity distances along a 1-parametric motion

for interpretation 3 .

We developed a novel open-source so�ware interface between Maple,

BERTINI and Paramotopy [1].

The interface algorithm’s advantage is that we computed the generic

critical points for all the presented 9 interpretations using intrinsic

and extrinsic metrics.

In this way, users need to run only Step 1 and Step 2 by defining

base/platform configuration knots and a 1-parametric motion to

compute the closest singularity-distances for 3-RPR manipulators.
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