A planar framework, which is a graph together with a map of its vertices to the plane, is flexible if it allows a continuous deformation preserving the distances between adjacent vertices. It has been shown recently that a finite graph admits a flexible framework if and only if it has a so called NAC-coloring, which is an edge coloring with a condition on cycles. We extend this result to the case of frameworks with countable vertex sets.

Rigidity and flexibility of finite frameworks are well-studied topics and plenty of results have been obtained so far. For example, finite rigid frameworks for which the realization...
is general (e.g. in which the coordinates of the points are algebraically independent) are combinatorially characterized by the so-called Laman theorem [9, 12], or via an iterative construction involving the so-called Henneberg steps [6].

To our knowledge, flexibility and rigidity of infinite graphs started to be investigated only recently [11], with particular interest regarding periodic frameworks [1, 10]. A Laman-type theorem for the rigidity of general infinite framework is proven in [7].

In the case of finite graphs, the existence of a flexible framework can be inferred from the existence of a particular edge 2-coloring of the graphs, called NAC-coloring [3]. Notice that such framework may well be not general. This technique was adapted to infinite periodic frameworks in [2].

In this paper, we show that the natural analogue of NAC-colorings for infinite graphs provides a combinatorial characterization of the existence of a flexible framework. More precisely, we show (Theorem 2.5):

Theorem. A countably infinite connected graph admits a flexible framework if and only if it has a NAC-coloring.

The proof of the main theorem relies on two different techniques. The “easy” implication is the construction of a flexible framework from a NAC-coloring: this is a straightforward extension of the analogue statement for finite fields. For the other implication, we consider an ascending tower of finite subgraphs that covers the whole graph and we recursively apply the known result about NAC-colorings for finite graphs. In particular, once a NAC-coloring is found for one subgraph of the tower, it can be extended to the next subgraph using properties of NAC-colorings described in [5].

Section 1 provides the needed background notions and results and Section 2 contains the proof of the main statement.

1 Preliminaries

We recall the notions of realizations, frameworks, and flexibility, which are usually given for finite graphs, but extend naturally to graphs with countably many vertices and edges.

Definition 1.1. Let G be a connected graph, where V_G is finite or countable. A map $\rho: V_G \to \mathbb{R}^2$ such that $\rho(u) \neq \rho(v)$ for all edges $uv \in E_G$ is a realization. The pair (G, ρ) is called a framework. We define induced edge lengths $(\lambda_e)_{e \in E_G}$ by $\lambda_{uv} = ||\rho(u) - \rho(v)||$.

Definition 1.2. A flex of the framework (G, ρ) is a continuous path $t \mapsto \rho_t$, $t \in [0, 1)$, in the space of realizations of G such that $\rho_0 = \rho$ and each (G, ρ_t) induces the same edge lengths as (G, ρ). The flex is called trivial if for all $t \in [0, 1)$ there exists a Euclidean isometry M_t of \mathbb{R}^2 such that $M_t \rho_t(v) = \rho_t(v)$ for all $v \in V_G$.

We define a framework to be flexible if there is a non-trivial flex in \mathbb{R}^2. Otherwise, it is called rigid.

We use algebraic tools to investigate necessary conditions for flexibility. Hence, we want to transform the information about the existence of a flex into existence of a
positive-dimensional algebraic set consisting of realizations. Notice that this can be done easily, i.e., using just standard notions in algebraic geometry, only for finite graphs.

Definition 1.3. Let \(H \) be a finite graph and let \((H,\rho)\) be a flexible framework with induced edge lengths \((\lambda_e)_{e\in E_H}\). Let \(\bar{u}\bar{v}\) be an edge of \(H \). We consider the following polynomial system in \(\mathbb{C}^{2|V_H|} \) for unknown coordinates \((x_u, y_u)\) where \(u \in V_H \):

\[
\begin{align*}
x_u &= 0, & y_u &= 0, \\
x_{\bar{u}} &= \lambda_{\bar{u}\bar{v}}, & y_{\bar{u}} &= 0, \\
(x_u - x_{\bar{u}})^2 + (y_u - y_{\bar{u}})^2 &= \lambda_{uv}^2 \\
\end{align*}
\]

(1)

Notice that the first four equations impose that for all realizations that satisfy (1), the vertices of the edge \(\bar{u}\bar{v}\) have a fixed position. An irreducible complex algebraic curve \(C \) in the zero set of (1) is called an *algebraic motion of \((H,\rho)\) w.r.t. \(\bar{u}\bar{v}\). Notice that by a *curve* we mean any quasi-projective variety of dimension one, i.e., we allow Zariski open subsets of zero sets of polynomial equations.

Note that if \((H,\rho)\) has a flex, then the system (1) has infinitely many solutions and so \((H,\rho)\) admits an algebraic motion.

The algebraic technique employed in [3] proves that a finite graph has a flexible framework if and only if it admits a so-called NAC-coloring. We extend the notion of NAC-colorings to countable infinite graphs in a straightforward manner.

Definition 1.4. Let \(G \) be a graph (finite or countable). A coloring of edges \(\delta: E_G \to \{\text{blue, red}\}\) is called a *NAC-coloring*, if it is surjective and for every cycle \(^*\) in \(G \), either all edges have the same color, or there are at least two edges in each color. A NAC-coloring \(\delta\) induces two subgraphs of \(G \):

\[
G^\delta_{\text{red}} = (V_G, \{e \in E_G : \delta(e) = \text{red}\}) \quad \text{and} \quad G^\delta_{\text{blue}} = (V_G, \{e \in E_G : \delta(e) = \text{blue}\}).
\]

The set of NAC-colorings of \(G \) is denoted by \(\text{NAC}_G \). See Figure 2 for an example.

![Figure 2: A NAC-coloring of the graph in Figure 1](image)

The way how the existence of a flex determines a NAC-coloring is that NAC-colorings are constructed starting from valuations on the function field of an algebraic motion.

Although the graph can be infinite, cycles are always finite.

3
Definition 1.5. Let H be a finite graph and let (H, ρ) be a flexible framework. Let \mathcal{C} be an algebraic motion of (H, ρ). The NAC-colorings constructed following [4, Definition 2.9] from valuations on the function field of \mathcal{C} are called active w.r.t. \mathcal{C}, and we denote them by $NAC_H(\mathcal{C})$.

Active NAC-colorings behave nicely under restriction to subgraphs.

Lemma 1.6 ([5, Corollary 3.4]). Let \mathcal{C} be an algebraic motion of (H, ρ) and H' be a subgraph of H. If \mathcal{C}' is the algebraic motion obtained by the projection of \mathcal{C} to the vertices of H', then

$$NAC_{H'}(\mathcal{C}') = \{ \delta |_{E_{H'}} \in NAC_{H'} : \delta \in NAC_H(\mathcal{C}) \}.$$

In particular, a NAC-coloring of H' active w.r.t. \mathcal{C}' can be extended to a NAC-coloring of H active w.r.t. \mathcal{C}.

2 Main result

In this section, we prove the main result of the paper, namely Theorem 2.5. As for the finite case, the fact that the existence of a NAC-coloring implies the existence of a flexible framework is shown by a concrete construction. The idea for the opposite implication is the following: we consider an ascending tower of finite subgraphs. We construct a sequence of algebraic motions for these subgraphs so that they project to each other. Using Lemma 1.6, we get a chain of NAC-colorings, which can be used to define a NAC-coloring of the original graph.

The following statement was proved for the case of finite graphs in [3, Theorem 3.1]. The same idea of the proof works also in the infinite case.

Proposition 2.1. Let G be a countably infinite graph. If G has a NAC-coloring, then there is a flexible framework (G, ρ).

Proof. Let δ be a NAC-coloring of G. Let R_1, R_2, \ldots be the sets of vertices of connected components of the graph G^δ_{red} and B_1, B_2, \ldots be the sets of vertices of connected components of the graph G^δ_{blue}. Let r_1, r_2, \ldots and b_1, b_2, \ldots be pairwise distinct vectors in \mathbb{R}^2 such that $r_1 = b_1 = (0, 0)$. For $\alpha \in [0, 2\pi)$, we define a map $\rho_\alpha : V_G \to \mathbb{R}^2$ by

$$\rho_\alpha(v) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot b_j + r_i,$$

where i and j are such that $v \in R_i \cap B_j$. We show that the induced edge lengths λ_α are the same for all α. We have

$$\lambda_\alpha(uv) = \| \rho_\alpha(u) - \rho_\alpha(v) \| = \| \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot (b_j - b_l) + (r_i - r_k) \|$$

for all edges $uv \in E_G$, where i, j, k, l are such that $u \in R_i \cap B_j$ and $v \in R_k \cap B_l$. If uv is red, then $i = k$ and we have

$$\lambda_\alpha(uv) = \| \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot (b_j - b_l) \| = \| b_j - b_l \|.$$
The length $\lambda_{\alpha}(uv)$ is non-zero, otherwise $j = l$, namely, u and v are in the same blue components, which is not possible as there would be a cycle with one red edge and all others blue. If uv is blue, then $j = l$ and hence

$$\lambda_{\alpha}(uv) = \|r_{k} - r_{k}\|.$$

The length $\lambda_{\alpha}(uv)$ is non-zero by an analogous reason as above. To conclude, the framework (G, ρ_{0}) is flexible since $\alpha \mapsto \rho_{\alpha}$ is a non-trivial flex by surjectivity of δ. \hfill \Box

We specify what we mean by a tower of subgraphs.

Definition 2.2. Let G be a connected graph. A sequence $(G_{i})_{i \geq 0}$ of induced finite connected subgraphs of G is a **subgraph tower** in G if G_{i} is a proper subgraph of G_{i+1} for all $i \geq 0$, and $\bigcup_{i \geq 0} V_{G_{i}} = V_{G}$.

Notice that for us, differently as for [7], all subgraphs in a subgraph tower are induced and the tower is vertex spanning by definition.

We will need the following algebro-geometric statement to construct a tower of subgraphs with a sequence of algebraic motions.

Lemma 2.3. Let $X \subseteq \mathbb{C}^{m}$ and $Y \subseteq \mathbb{C}^{n}$, with $m, n \in \mathbb{N}$, be quasi-projective irreducible varieties and suppose that Y is a curve. Let $\pi: X \rightarrow Y$ be a dominant regular map. Then there exists an irreducible curve $D \subseteq X$ such that $\pi|_{D}: D \rightarrow Y$ is dominant.\footnote{We thank Valentina Beorchia for useful discussions about the proof of this lemma.}

Proof. Let $k := \dim(X)$ and let L be a $(m - k + 1)$-dimensional affine space in \mathbb{C}^{m}. Let G be the group of affinities of \mathbb{C}^{m}. Then by Kleiman’s transversality theorem [8, Theorem 2], there exists an open dense subset $U \subseteq G$ such that $g \cdot L$ intersects X in a curve for every $g \in U$. Let F be a general fiber of π_{i}, of dimension $k - 1$. Again by Kleiman’s theorem, there exists an open dense subset $V \subseteq G$ such that $g \cdot L$ intersects F in finitely many points for every $g \in V$. We now pick any element $g \in U \cap V$ and define $D' := (g \cdot L) \cap X$. Then D' is a curve, and $\pi|_{D'}: D' \rightarrow C$ is dominant because by construction it is a map between curves and one of its fibers is finite. If D' is irreducible, we take $D := D'$; otherwise, there is a component of D' such that the restriction of π is still dominant, and we take that component as D. \hfill \Box

Lemma 2.4. Let (G, ρ) be a countably infinite flexible framework. There is a subgraph tower $(G_{i})_{i \geq 0}$ and a sequence $(C_{i})_{i \geq 0}$ such that for all $i \geq 0$, the curve C_{i} is an algebraic motion of $(G_{i}, \rho|_{V_{G_{i}}})$ and the projection $\pi_{i}: C_{i} \rightarrow C_{i-1}$ to the coordinates of vertices of G_{i} is a dominant map.

Proof. Let $G = (V_{G}, E_{G})$ be a graph admitting a flexible framework and \bar{uv} be an edge of G. Let $f: [0,1) \rightarrow (\mathbb{R}^{2})^{V_{G}}$ be the corresponding non-trivial flex. Without loss of generality, we can assume that the flex f is constant on \bar{uv}. Since the flex is non-trivial, there exists a vertex w of G for which the flex is nonconstant. Let G_{0} be an induced connected subgraph of G containing all \bar{u}, \bar{v}, and w. Fix any subgraph tower $(G_{i})_{i \geq 0}$
starting from G_0. For any $i \geq 0$, let f_i be the composition of the flex f with the projection $(\mathbb{R}^2)^{|V_i|} \rightarrow (\mathbb{R}^2)^{|V_i|}$, which is hence a flex of G_i. Let

$$\pi_i : \mathbb{C}^{|V_i|} \rightarrow \mathbb{C}^{|V_{i-1}|}$$

be the natural projection that forgets the coordinates corresponding to the vertices of $V_{G_i} \setminus V_{G_{i-1}}$. By construction, we have $f_{i-1} = \pi_i \circ f_i$. Let ρ_i be the realization $f_i(0)$.

For any $i \geq 0$, let F_i be the Zariski closure of $f_i([0,1])$ in the variety defined by (1) for G_i. By construction, all the F_i are positive-dimensional, and the restrictions $\pi_i|F_i : F_i \rightarrow F_{i-1}$ are dominant. In fact, since in general for a continuous function $g : A \rightarrow B$ and $Z \subseteq A$ we have $f(Z) \subseteq f(B)$, we have

$$\pi_i(F_i) = \pi_i(f_i([0,1])) \subseteq \overline{\pi_i(f_i([0,1]))} = F_{i-1}$$

and

$$\pi_i(F_i) \supseteq f_{i-1}([0,1]) \quad \text{hence} \quad \overline{\pi_i(F_i)} \supset f_{i-1}([0,1]) = F_{i-1}.$$

We refine our sequence of varieties $(F_i)_{i \geq 0}$ in such a way that the restrictions of the projections π_i become surjective. To do so, for every $i > j$ define $\eta_{i \rightarrow j}$ to be the composition $\pi_j \circ \cdots \circ \pi_i$. Let $T_{i \rightarrow j}$ to be the image of F_i under $\eta_{i \rightarrow j}$. Define

$$U_j := \bigcap_{i > j} T_{i \rightarrow j}.$$

By construction, each U_j contains $f_j([0,1])$ because every $T_{i \rightarrow j}$ does so for $i > j$. Therefore, all the varieties in the sequence $(U_j)_{j \geq 0}$ are positive dimensional and by construction the restrictions $\pi_j|U_j : U_j \rightarrow U_{j-1}$ are surjective.

Hence, there exists an algebraic motion C_0 w.r.t. the edge $\bar{u}v$ of the framework (G_0, ρ_0) contained in U_0. Now, let D_1 be an irreducible component of $(\pi_1|_{U_1})^{-1}(C_0)$ such that $\pi_1|D_1 : D_1 \rightarrow C_0$ is dominant. We apply Lemma 2.3 to this situation and we obtain an algebraic motion C_1 of the framework (G_1, ρ_1) contained in $D_1 \subseteq U_1$ that projects dominantly on C_0. We now proceed inductively and we construct a sequence of algebraic motions with the desired properties.

Finally, we can prove the main result.

Theorem 2.5. A countably infinite connected graph admits a flexible framework if and only if it has a NAC-coloring.

Proof. The “if” part of the statement is Proposition 2.1. Hence, we are left to prove the “only if” part of the statement. Consider then a countably infinite connected graph $G = (V_G, E_G)$ admitting a flexible framework (G, ρ). Using Lemma 2.4, let $(G_i)_{i \geq 0}$ be a subgraph tower of the graph G with a sequence of algebraic motions $(C_i)_{i \geq 0}$. We construct a sequence $(\delta_i)_{i \in \mathbb{N}}$ of NAC-colorings such that δ_i is a NAC-coloring of G_i and the restriction of δ_{i+1} to E_{G_i} is δ_i. We proceed inductively. Let δ_0 be an active NAC-coloring of G_0 w.r.t. C_0. Such NAC-coloring exists by [3, Theorem 3.1]; see also [4, Theorem 2.8]. By Lemma 1.6, if δ_i is an active NAC-coloring of G_i w.r.t. C_i, then there
exists an active NAC-coloring δ_{i+1} of C_{i+1} such that the restriction of δ_{i+1} to the edges of G_i is δ_i.

This sequence of NAC-colorings gives a well-defined coloring for G, since each edge in G is eventually an edge of a subgraph in the tower. Such a coloring is a NAC-coloring since every cycle of G is contained in some G_j in the subgraph tower. This completes the proof.

References

(JL, JS) Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC)

(JL) Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague