Identifiability of rank-3 tensors
[E. Ballico, A. Bernardi, P. Santarsiero]

Pierpaola Santarsiero
p.santarsiero-1@unitn.it

University of Trento, Italy

MEGA 2021
Identifiability
Quick introduction

Core problem: Understand if a given tensor $T \in \mathbb{C}^{n_1+1} \otimes \cdots \otimes \mathbb{C}^{n_k+1}$ admit a unique decomposition as a sum of pure tensors

$$T = \sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{k,i} \quad (v_{j,i} \in \mathbb{C}^{n_j+1}, j = 1, \ldots, k).$$

Applications

Phylogenetic (Allman, Rhodes, Sullivant...)
S. Processing (Jiang, Sidiropoulos...)

Pure mathematics

Generic (Ciliberto, Chiantini, Galuppi, Hauenstein, Mella, Oeding, Ottaviani, Sommese...)

Specific [Kruskal’70], [De Lathauwer-Domanov’13], [Chiantini-Ottaviani-Vannieuwenhoven’17], [Lovitz-Petrov’21].
Overview

1. Notation

2. Concise Segre and identifiability of rank-2 tensors

3. Identifiability of rank-3 tensors
Tensors in the projective space

We work over \(\mathbb{C} \).

- Let \(V_1, \ldots, V_k \) be vectors spaces, \(\dim(V_i) = n_i + 1 \). The Segre variety is the image of

\[
\nu : \mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_k) \rightarrow \mathbb{P}(V_1 \otimes \cdots \otimes V_k) := \mathbb{P}^N
\]

\[
([v_1], \ldots, [v_k]) \mapsto [v_1 \otimes \cdots \otimes v_k].
\]

- \(Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k} \) and \(X := \nu(Y) \subset \mathbb{P}^N \).

- The rank of a tensor \(q \in \mathbb{P}^N \) is

\[
r(q) := \min\{r \in \mathbb{N} \mid q \in \langle p_1, \ldots, p_r \rangle, p_i \in X\}.
\]
Fix $r > 0$. The r-th secant variety $\sigma_r(X)$ of $X \subset \mathbb{P}^N$ is

$$
\sigma_r(X) := \bigcup_{p_1,\ldots,p_r \in X} \langle p_1, \ldots, p_r \rangle.
$$
A tensor $q \in \mathbb{P}^N$ of rank $r > 0$ is identifiable if there exists a unique r-uple of points $p_1, \ldots, p_r \in X$ such that $q \in \langle p_1, \ldots, p_r \rangle$.

- For any $q \in \mathbb{P}^N$, we define the **space of solutions** of q as
 \[S(Y, q) := \{ A \subset Y \mid \#(A) = r(q) \text{ and } q \in \langle \nu(A) \rangle \}. \]

- If q is identifiable then $\#S(Y, q) = 1$.
- If $A \in S(Y, q)$, then A evinces the rank of q.

Identifiability of Tensors
Lemma

1 For any \(q \in \mathbb{P}(V_1 \otimes \cdots \otimes V_k) \), there is a unique minimal multiprojective space \(Y' \simeq \mathbb{P}^{n'_1} \times \cdots \times \mathbb{P}^{n'_k} \subseteq Y \simeq \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k} \) with \(n'_i \leq n_i \), \(i = 1, \ldots, k \) such that \(S(Y, q) = S(Y', q) \).

Definition (concise Segre)

Given a point \(q \in \mathbb{P}^N \), we will call concise Segre the variety \(X_q := \nu(Y') \) where \(Y' \subseteq Y \) is the minimal multiprojective space \(Y' \subseteq Y \) such that \(q \in \langle \nu(Y') \rangle \) as in Concision/Autarky Lemma.

Building the concise Segre...

Let \(\pi_i : Y \rightarrow \mathbb{P}^{n_i} \) be the projection onto the \(i \)-th factor of \(Y \). The minimal \(Y' \) defining the concise Segre of a point \(q \) can be obtained as follows.

1. Fix any \(A \in S(Y, q) \), set \(A_i := \pi_i(A) \subset \mathbb{P}^{n_i} \), for all \(i = 1, \ldots, k \).
2. Each \(\langle A_i \rangle \subseteq \mathbb{P}^{n_i} \) is a well-defined projective subspace of dimension at most \(\min\{n_i, r(q) - 1\} \).
3. By Concision/Autarky we have \(Y' = \prod_{i=1}^{k} \langle A_i \rangle \).
4. If for one \(A \in S(Y, q) \) the set \(\pi_i(A) \) is a single point then the \(i \)-th factor won’t appear in the concise Segre.
Rank-2 tensors

With rank-2 tensors we reduce to work with $Y = (\mathbb{P}^1)^k$ thanks to Concision/Autarky. For the general case everything was already known.

- Matrix case and 3-factor case are classical.
- $k \geq 4$. ²

Proposition

Let $q \in \sigma^0_2(X)$. Then $|S(Y, q)| > 1$ if and only if the concise Segre X_q of q is $X_q = \nu(\mathbb{P}^1 \times \mathbb{P}^1)$.

Let \(q \in \mathbb{P}^N \) be a rank-3 tensor.

- Fix \(A \in \mathcal{S}(Y, q) \), where \(Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k} \).
- Note that for all \(i = 1, \ldots, k \)

\[
\dim \langle \pi_i(A) \rangle = \begin{cases}
0 & \implies \text{we get rid of the } i\text{-th factor} \\
1 & \implies \text{the } i\text{-th factor becomes } \mathbb{P}^1 \\
2 & \implies \text{the } i\text{-th factor becomes } \mathbb{P}^2
\end{cases}
\]

Therefore we reduce to work with multiprojective spaces given by products of projective lines and planes.
Examples 1 and 2

Let $Y = \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1$. Consider the Segre embedding on the last two factors and take a hyperplane section which intersects $\nu(\mathbb{P}^1 \times \mathbb{P}^1)$ in a conic C.

Take a point $q \in \langle \nu(\mathbb{P}^2 \times C) \rangle$. We distinguish two different cases depending on whether C is irreducible or not.
Example 1
Irreducible \mathcal{C}

The previous construction is equivalent to consider an irreducible divisor $G \in |\mathcal{O}_Y(0, 1, 1)|$.

- $G \cong \mathbb{P}^2 \times \mathbb{P}^1$ embedded via $\mathcal{O}(1, 2)$.
- Therefore $\dim \sigma_2(\nu(G)) = 7$ and thus $\sigma_2(\nu(G)) \subsetneq \langle \nu(G) \rangle \cong \mathbb{P}^8$.

As a direct consequence we get that a general point $q \in \langle \nu(G) \rangle$ has $\nu(G)$-rank 3 and it is not-identifiable because of the non-identifiability of the points on $\langle \mathcal{C} \rangle$.
Moreover we proved that $S(Y, q) = S(G, q)$.
Example 2
Reducible \(C \)

Let \(Y = \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1 \). Take \(G = G_1 \cup G_2 \) a reducible element of \(|\mathcal{O}_Y(0, 1, 1)| \), where

- \(G_1 \in |\mathcal{O}_Y(0, 0, 1)| \), i.e. \(G_1 \cong \mathbb{P}^2 \times \mathbb{P}^1 \times \{ \text{pt} \} \),
- \(G_2 \in |\mathcal{O}_Y(0, 1, 0)| \), i.e. \(G_2 \cong \mathbb{P}^2 \times \{ \text{pt} \} \times \mathbb{P}^1 \).

We proved that

\[
\langle \nu(G) \rangle = \text{Join}(\sigma_2(\nu(G_1)), \nu(G_2)) = \text{Join}(\sigma_2(\nu(G_2)), \nu(G_1)).
\]

A general \(q \in \langle \nu(G) \rangle = \text{Join}(\sigma_2(\nu(G_1)), \nu(G_2)) \) has rank 3 and for the subsets evincing its rank we have a 4-dimensional family of sets \(A \) such that \(\#(A) = 3, \#A \cap G_1 = 2, \#A \cap G_2 = 1 \)
\(A \cap G_1 \cap G_2 = \emptyset \) (analogously, by looking at \(q \) as an element of \(\text{Join}(\sigma_2(\nu(G_2)), \nu(G_1)) \)).

Also in this case \(S(Y, q) = S(G, q) \).
Example 3

Take $Y' := \mathbb{P}^1 \times \mathbb{P}^1 \times \{u_3\} \times \cdots \times \{u_k\} \subseteq Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$, $k \geq 2$, $n_1, n_2 \leq 2$, $n_3 = \cdots = n_k = 1$.

Take $q' \in \langle \nu(Y') \rangle \setminus \nu(Y')$, $A \in S(Y', q')$ and $p \in Y \setminus Y'$.

Assume that Y is the minimal multiprojective space containing $A \cup \{p\}$ and take $q \in \langle \{q', \nu(p)\} \rangle \setminus \{q', \nu(p)\}$.

- If $k \geq 3$ and $\sum_{i=1}^{k} n_i \geq 4$ then $r_{\nu(Y)}(q) = 3$ and $S(Y, q) = \{\{p\} \cup A\}_{A \in S(Y', q')}$.
Rank-3 tensors

Let $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ be the multiprojective space of the concise Segre of a rank-3 tensor q. The rank-3 tensor q is identifiable except in the following cases:

1. q is a rank-3 matrix, in this case $\dim(S(Y, q)) = 6$;
2. q belongs to a tangent space of the Segre embedding of $Y = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, in this case $\dim(S(Y, q)) \geq 2$;
3. q is an order-4 tensor of $\sigma_3^0(Y)$ with $Y = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, in this case $\dim(S(Y, q)) \geq 1$. \(^3\)

Rank-3 tensors

Main theorem

Let $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ be the multiprojective space of the concise Segre of a rank-3 tensor q. The rank-3 tensor q is identifiable except in the following cases:

1. q is a rank-3 matrix, in this case $\dim(S(Y, q)) = 6$;

2. q belongs to a tangent space of the Segre embedding of $Y = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, in this case $\dim(S(Y, q)) \geq 2$;

3. q is an order-4 tensor of $\sigma^0_3(Y)$ with $Y = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, in this case $\dim(S(Y, q)) \geq 1$.

4. q is as in Example 1 where $Y = \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1$, in this case $\dim(S(Y, q)) = 3$;

5. q is as in Example 2 where $Y = \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1$, in this case $S(Y, q)$ contains two different 4-dimensional families;

6. q is as in Example 3. In this case $\dim(S(Y, q)) \geq 2$ and if $n_1 + n_2 + k \geq 6$ then $\dim(S(Y, q)) = 2$.
Outline of the proof

Let \(Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k} \), where all \(n_i \in \{1, 2\} \). Let \(q \in \mathbb{P}^N \), assume \(A, B \in S(Y, q) \) and call \(S := A \cup B \).

We proved that \(\#A \cap B \leq 1 \).

Main Tool

\(\varepsilon_i = (0, \ldots, 0, 1, 0, \ldots, 0) \) and \(\hat{\varepsilon}_i = (1, \ldots, 1, 0, 1, \ldots, 1) \).

Lemma (BBCG\(^3\))

Let \(k \geq 2 \) and consider \(Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k} \), where all \(n_i \geq 1 \). Let \(q \in \mathbb{P}^N \), \(A, B \in S(Y, q) \) be two different subsets evincing the rank of \(q \) and write \(S = A \cup B \). Let \(D \in |\mathcal{O}_Y(\varepsilon)| \) be an effective Cartier divisor such that \(A \cap B \subset D \), where \(\varepsilon = \sum_{i \in I} \varepsilon_i \) for some \(I \subset \{1, \ldots, k\} \). If \(h^1(\mathcal{I}_{S \setminus S \cap D}(\hat{\varepsilon})) = 0 \) then \(S \subset D \).

Thank you!

