Combinatorial Differential Algebra of x^p

Anna-Laura Sattelberger (MPI-MiS Leipzig)

based on joint work with Rida Ait El Manssour (MPI–MiS Leipzig)
arXiv:2102.03182

MEGA 2021
UiT – The Arctic University of Tromsø
June 7–11, 2021
Combinatorial Differential Algebra of x^p

- at the interface of geometric combinatorics and differential algebra

Linking...

1. differential ideals
2. lattice polytopes arising from graphs
3. regular triangulations
Differential algebra

- study of polynomial O/PDEs with methods from Commutative Algebra

Differential rings and ideals

- \(\mathbb{C}[x^{(\infty)}] \) the ring of differential polynomials in \(x \) over \(\mathbb{C} \), i.e.,
 \((\mathbb{C}[x, x^{(1)}, x^{(2)}, \ldots], \partial), \partial(x^{(k)}) = x^{(k+1)}, \partial|_\mathbb{C} \equiv 0, \) Leibniz’ rule
- \(I \triangleleft \mathbb{C}[x^{(\infty)}] \) is a differential ideal if \(\partial(I) \subseteq I \)
- For \(S \subseteq \mathbb{C}[x^{(\infty)}] \), \(\langle S \rangle^\infty \) denotes the differential ideal generated by \(S \).

Bivariate case

\(\mathbb{C}[x^{(\infty, \infty)}] := \mathbb{C}[\{x^{(k, \ell)}\}, \{\partial_s, \partial_t\}] \) with

\[
\partial_s(x^{(k, \ell)}) = x^{(k+1, \ell)}, \quad \partial_t(x^{(k, \ell)}) = x^{(k, \ell+1)}, \quad \partial_s|_\mathbb{C} \equiv 0, \quad \partial_t|_\mathbb{C} \equiv 0
\]

the ring of partial differential polynomials in \(x \) over \(\mathbb{C} \) in the two independent variables \(s \) and \(t \).
Definition

$G \subseteq \mathbb{C}[x^{(\infty)}]$ is a differential Gröbner basis of $\langle G \rangle^{(\infty)}$ if

$\{\partial^k(g) \mid k \in \mathbb{N}, g \in G\}$ is an algebraic Gröbner basis of $\langle G \rangle^{(\infty)}$ w.r.t. \prec.

Theorem (Zobnin, 2009)

The singleton $\{x^p\}$ is a differential Gröbner basis of $\langle x^p \rangle^{(\infty)}$ with respect to the reverse lexicographical ordering.
Jets of the fat point x^p on the affine line

$\begin{align*}
R_n & \quad \text{the polynomial ring } \mathbb{C}[x_0, \ldots, x_n] \\
f_{p,n} \in R_n[t] & \quad \text{the polynomial } (x_0 + x_1 t + \cdots + x_n t^n)^p \text{ in } t \\
C_{p,n} \triangleleft R_n & \quad \text{the ideal generated by the coefficients of } f_{p,n} \\
I_{p,n} \triangleleft \mathbb{C}[x(\infty)] & \quad \text{the differential ideal generated by } x^p \text{ and } x^{(n)}
\end{align*}$

Truncating Taylor series

$C_{p,n}$ encodes certain n-jets of the fat point x^p on the affine line

Linking $C_{p,n}$ and $I_{p,n}$

$$R_n/C_{p,n} \cong \mathbb{C}[x(\infty)]/I_{p,n+1}, \quad x_k \mapsto \frac{1}{k!} x^{(k)}.$$

Question

For fixed n, is $\dim_\mathbb{C}(R_n/C_{p,n})$ a polynomial in p of degree $n + 1$?
Example: \(\dim_{\mathbb{C}}(R_6/C_{p,6})_{p \in \mathbb{N}} \)

The first 13 entries of the sequence \(\dim_{\mathbb{C}}(R_6/C_{p,6})_{p \in \mathbb{N}} \) are\(^1\)

\[0, 1, 34, 353, 2037, 8272, 26585, 72302, 173502, 377739, 760804, 1437799, 2576795, \]

coinciding with the sequence https://oeis.org/A244881.

Interpolating polynomial (computed on the values for \(p = 1, \ldots, 20 \)):

\[
\frac{17}{315} p^7 + \frac{17}{90} p^6 + \frac{53}{180} p^5 + \frac{19}{72} p^4 + \frac{13}{90} p^3 + \frac{17}{360} p^2 + \frac{1}{140} p,
\]

of degree \(7 = 6 + 1 \).

\(^1\)computed with Singular
Counting lattice points of polytopes

\(C \) an integral \(d \)-dimensional polytope
\(tC \) the polytope dilated by \(t \in \mathbb{N} \)

Then: \(|tC \cap \mathbb{Z}^n| \) is a polynomial in \(t \) of degree \(d \), the \textbf{Ehrhart polynomial} of \(C \).

\textbf{Theorem (Ait El Manssour–S., 2021)}

The number \(\dim_C(R_n/C_{p,n}) \) is the Ehrhart polynomial of the polytope

\[P_n := \{(w_0, \ldots, w_n) \in (\mathbb{R}_{\geq 0})^{n+1} | w_i + w_{i+1} \leq 1 \text{ for all } 0 \leq i \leq n - 1 \} \]
evaluated at \(p - 1 \).

\textbf{Proof: Results from graph theory +}

\textbf{Proposition (Bruschek–Mourtada–Schepers, 2013)}

\(\text{in}_{\text{revlex}}(C_{p,n}) \) is generated by \(\{x_i^{u_i}x_{i+1}^{u_{i+1}} | u_i + u_{i+1} = p, 0 \leq i \leq n - 1 \} \).

\(\triangleright \) graph \(G \) with \(V = \{0, 1, \ldots, n\} \) and \(E = \{[i, i + 1]\}_{i=0,\ldots,n-1} \)
Fractional stable set polytope of a graph

\(G \) an undirected graph with vertices \(V \) and edges \(E \)
\(C(G) \) the cliques of \(G \)

Two polytopes

- **Stab\((G)\) := \(\text{conv}\{\chi^S \in \mathbb{R}^V | S \subseteq V \text{ stable}\} \)** the stable set polytope of \(G \), with \(\chi^S = (\chi^S_v)_{v \in V} \in \mathbb{R}^V \) incidence vectors
- **QStab\((G)\) := \{x \in \mathbb{R}^V | 0 \leq x(v) \forall v \in V, \sum_{v \in Q} x(v) \leq 1 \forall Q \in C(G)\} \)** the fractional stable set polytope of \(G \)

Then: \(\text{Stab}(G) = \text{conv}\{\{0, 1\}^V \cap \text{QStab}(G)\} \).

Theorem (Chvátal, 1975)

A graph \(G \) is perfect iff \(\text{Stab}(G) = \text{QStab}(G) \)
Bivariate case

\[R_{m,n} \]

\[f_{p,(m,n)} \in R_{m,n}[s, t] \]

\[C_{p,(m,n)} \triangleleft R_{m,n} \]

\[I_{p,(m,n)} \triangleleft \mathbb{C}[x^{(\infty, \infty)}] \]

the polynomial ring \(\mathbb{C}[\{x_k, \ell\}_{0 \leq k \leq m, 0 \leq \ell \leq n}] \)

the polynomial \((x_{00} + x_{10}s + \cdots + x_{mn}s^m t^n)^p \) in \(s \) and \(t \)

the ideal generated by the coefficients of \(f_{p,(m,n)} \)

the differential ideal generated by \(x^p, x^{(m,0)}, \) and \(x^{(0,n)} \)

Linking \(C_{p,(m,n)} \) and \(I_{p,(m,n)} \)

\[\frac{R_{m,n}}{C_{p,(m,n)}} \cong \frac{\mathbb{C}[x^{(\infty, \infty)}]}{I_{p,(m+1,n+1)}}, \quad x_k, \ell \mapsto \frac{1}{k! \ell!} x^{(k, \ell)}. \]

Looking for monomial orderings...

...for which the coefficients of \(f_{p,(m,n)} \) are a Gröbner basis of \(C_{p,(m,n)}. \)
The regular triangulation $T_{m,2}$

$T_{m,2}$ is the placing triangulation of the $m \times 2$-rectangle for the point configuration $[(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), \ldots, (m,0), (m,1), (m,2)]$ induced by the vector $(1, 2, \ldots, 2^{3m+2})$ (lower hull convention).

Figure: The regular triangulation $T_{m,2}$
The regular triangulation $T_{m,n}$

$T_{m,n}$ the placing triangulation of the $m \times n$-rectangle for the point configuration

$[(0,0), (0,1), \ldots, (0,n), (1,0), \ldots, (1,n), \ldots, (m,0), \ldots, (m,n)]$

Figure: The regular triangulation $T_{1,n}$
T-orderings

T a triangulation of the $m \times n$-rectangle

Definition

A monomial ordering \prec on $\mathbb{C}[\{x^{(k,\ell)}\}_{0 \leq k \leq m, 0 \leq \ell \leq n}]$ is called **T-ordering** if each of the leading monomials of $(x^p)^{(k,\ell)}$ is supported on a triangle of T.

Proposition (Ait El Manssour–S., 2021)

For all k, ℓ, $(x^p)^{(k,\ell)} \in \mathbb{C}[x^{(\leq m, \leq n)}]$ has a unique monomial supported on a triangle of $T_{m,n}$. The reverse lexicographical ordering \prec on $\mathbb{C}[x^{(\leq m, \leq n)}]$ is a $T_{m,n}$-ordering for all p.
A higher-dimensional analog of Zobnin’s result

≺ a \(T_{m,2} \)-ordering

Theorem (Ait El Manssour–S., 2021)

For all \(m, p \in \mathbb{N} \), \(\{(x^p)^{(k,\ell)}\}_{0 \leq k \leq mp, 0 \leq \ell \leq 2p} \) is a Gröbner basis of \(\langle x^p \rangle^{(\infty,\infty)} \) in \(\mathbb{C}[x^{(\leq m,\leq 2)}] \) with respect to any \(T_{m,2} \)-ordering.

Theorem (Ait El Manssour–S., 2021)

For all \(m \in \mathbb{N} \), \(\dim_{\mathbb{C}}(R_{m,2}/C_{p,(m,2)}) \) is the Ehrhart polynomial of the \(3(m+1) \)-dimensional lattice polytope

\[
P_{(m,2)} := \left\{ (u_{00}, u_{01}, u_{02}, \ldots, u_{m0}, u_{m1}, u_{m2}) \in (\mathbb{R}_{\geq 0})^{3(m+1)} \mid u_{k1,1} + u_{k2,2} + u_{k3,3} \leq 1 \right. \\
\text{for all indices s.t. } \{(k_1, \ell_1), (k_2, \ell_2), (k_3, \ell_3)\} \text{ is a triangle of } T_{m,2} \}
\]
evaluated at \(p - 1 \).
Example: $C_{3,(2,2)}$

$C_{(2,2)}$ the ideal in $R_{2,2} = \mathbb{C}[x_{00}, x_{10}, x_{01}, x_{02}, x_{11}, x_{12}, x_{20}, x_{21}, x_{22}]$ generated by the $(2p + 1)^2$ many coefficients of $f_{p,(2,2)} \in R_{2,2}[s, t]$

the **weighted reverse lexicographical ordering** on $R_{2,2}$ for $w_{2,2} := (2^8 + 1, \ldots, 2^8 + 1) - (2^0, 2^1, \ldots 2^8) \in \mathbb{N}^9$

In the leading monomials of the coefficients of $f_{3,(2,2)}$, the following triples of variables show up:

$$\{x_{00}, x_{01}, x_{10}\}, \{x_{01}, x_{02}, x_{10}\}, \{x_{02}, x_{10}, x_{11}\}, \{x_{02}, x_{11}, x_{12}\},$$
$$\{x_{10}, x_{11}, x_{20}\}, \{x_{11}, x_{12}, x_{20}\}, \{x_{12}, x_{20}, x_{21}\}, \{x_{12}, x_{21}, x_{22}\}.$$

The indices of those define the triangles of the regular triangulation $T_{2,2}$:
Figure: For height vectors inducing those four regular unimodular triangulations of the 3 × 2-rectangle, the weighted reverse lexicographical ordering turns the coefficients of $f_{p,(3,2)}$ into a Gröbner basis of $C_{p,(3,2)}$.

$m = 3, n = 2$
Open problems

Question 1
For which $m, n, p \in \mathbb{N}$ does there exist a regular unimodular triangulation T of the $m \times n$-rectangle such that the coefficients of $f_{p,(m,n)}$ are a Gröbner basis of $C_{p,(m,n)}$ with respect to the weighted reverse lexicographical ordering for a vector inducing that triangulation in the upper hull convention?

Question 2
Are the four triangulations depicted on slide 15, continued to the $m \times 2$-rectangle, all regular unimodular triangulations that give rise to a Gröbner basis?

Question 3
As p varies, is $\dim_C(R_{m,n}/C_{p,(m,n)})$ the Ehrhart polynomial of the (fractional) stable set polytope of the edge graph of T and is this graph perfect?

Inc(\mathbb{N})-stable ideals [KLS16, HS09, NR17]
Parallels to be worked out
A “geometrical provocation” inspired by $T_{2,2}$.
Find more of them on www.alsattelberger.de!
Thank you very much for your attention!
References I

References II

The jet scheme of a monomial scheme.

My Favorite Theorem.

[HS09] Christopher Hillar and Seth Sullivant.
Finite Gröbner bases in infinite dimensional polynomial rings and applications.

[KLS16] Robert Krone, Anton Leykin, and Andrew Snowden.
Hilbert series of symmetric ideals in infinite polynomial rings via formal languages.

Differential Algebra and Algebraic Groups.

On the structure of differential polynomials and on their theory of ideals.

[Lov71] László Lovász.
Normal hypergraphs and the perfect graph conjecture.

[MS10] Rahim Moosa and Thomas Scanlon.
Jet and prolongation spaces.

[NR17] Uwe Nagel and Tim Römer.
Equivariant Hilbert Series in non-Noetherian Polynomial Rings.
References III

[Oll90] François Ollivier.
Standard Bases of Differential Ideals.

[OSC] OSCAR Computer Algebra System.
https://oscar.computeralgebra.de.

[Rit50] Joseph F. Ritt.

[Stu96] Bernd Sturmfels.
Gröbner bases and convex polytopes, volume 8 of University lecture series.
American Mathematical Society, Providence, R.I., 1996.

[Yue06] Cornelia Yuen.
One higher dimensional analog of jet schemes.