A Tale of Two Norms

The Weyl norm

$f \in \mathcal{H}_{d}^{\mathbb{F}}[1] \quad f=\sum_{|\alpha|=d} f_{\alpha} X^{\alpha}$
where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$ and $|\alpha|=\alpha_{0}+\cdots+\alpha_{n}$.

$$
\|f\|_{W}:=\sqrt{\sum_{|\alpha|=d}\binom{d}{\alpha}^{-1}\left|f_{\alpha}\right|^{2}}
$$

where $\binom{d}{\alpha}$ is the multinomial coefficient $\frac{d!}{\alpha_{0}!\ldots \alpha_{n}!}$.
For $f=\left(f_{1}, \ldots, f_{q}\right) \in \mathcal{H}_{\mathrm{d}}[q]$ the Weyl norm extends as

$$
\|f\|_{W}:=\sqrt{\left\|f_{1}\right\|_{W}^{2}+\cdots+\left\|f_{q}\right\|_{W}^{2}}
$$

The ∞ norm

$$
\|f\|_{\infty}^{\mathbb{F}}:= \begin{cases}\max _{x \in \mathbb{S}^{n}}\|f(x)\|_{\infty}=\max _{x \in \mathbb{S}^{n}} \max _{i}\left|f_{i}(x)\right| & \text { if } \mathbb{F}=\mathbb{R} \\ \max _{z \in \mathbb{P}^{n}}\|f(z)\|_{\infty}=\max _{z \in \mathbb{P}^{n}} \max _{i}\left|f_{i}(z)\right| & \text { if } \mathbb{F}=\mathbb{C}\end{cases}
$$

Why bother to choose $\|f\|_{\infty}^{\mathbb{F}}$ over $\|f\|_{w}$?

Why bother?

Reason 1:

There is a huge gain for random data!
In the worst-case,

$$
\|f\|_{\infty}^{\mathbb{F}} \leq\|f\|_{w}
$$

In the random case,

Theorem

For random $\mathfrak{f} \in \mathcal{H}_{\mathrm{d}}^{\mathbb{F}}[q]$,

$$
\underset{f}{\mathbb{f}} \frac{\|f\|_{\infty}^{\mathbb{F}}}{\|f\|_{w}} \leq \mathcal{O}\left(\sqrt{\frac{n \ln (e \mathrm{D})}{N}}\right) \sim \mathcal{O}\left(\sqrt{\frac{\ln (e \mathrm{D})}{\mathrm{D}^{n}}}\right)(\text { for large } \mathrm{D})
$$

Huge gain for 'typical' input

Why bother?

Reason 2:

The ∞-norm can still control the derivatives!

Theorem

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}, f \in \mathcal{H}_{\mathrm{d}}^{\mathbb{F}}[1], x \in \mathbb{F}^{n+1}$ and $v \in \mathbb{F}^{n+1}$, then

$$
\left|\overline{\mathrm{D}}_{x} f v\right| \leq d^{\frac{1}{2}}\|f\| w\|x\|_{2}^{d-1}\|v\|_{2}
$$

Theorem (Kellogg's Inequality)
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}, f \in \mathcal{H}_{\mathrm{d}}^{\mathbb{F}}[1], x \in \mathbb{F}^{n+1}$ and $v \in \mathbb{F}^{n+1}$, then

$$
\left|\overline{\mathrm{D}}_{x} f v\right| \leq d\|f\|_{\infty}^{\mathbb{F}}\|x\|_{2}^{d-1}\|v\|_{2} .
$$

Why bother?

Reason 2:

The ∞-norm can still control the derivatives!

Theorem

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}, f \in \mathcal{H}_{\mathrm{d}}^{\mathbb{F}}[1], x \in \mathbb{F}^{n+1}$ and $v \in \mathbb{F}^{n+1}$, then

$$
\left|\overline{\mathrm{D}}_{x} f v\right| \leq d^{\frac{1}{2}}\|f\| w\|x\|_{2}^{d-1}\|v\|_{2}
$$

Theorem (Kellogg's Inequality)
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}, f \in \mathcal{H}_{\mathrm{d}}^{\mathbb{F}}[1], x \in \mathbb{F}^{n+1}$ and $v \in \mathbb{F}^{n+1}$, then

$$
\left|\overline{\mathrm{D}}_{x} f v\right| \leq d\|f\|_{\infty}^{\mathbb{F}}\|x\|_{2}^{d-1}\|v\|_{2} .
$$

Similar complexity analyses...

. . . with similar condition numbers
Complex setting:

$$
\begin{gathered}
\mu_{\text {norm }}(f, \zeta):=\|f\|_{W}\left\|\mathrm{D}_{\zeta} f^{\dagger} \Delta^{1 / 2}\right\|_{2,2} . \\
\downarrow \\
\mathrm{M}(f, \zeta)=\sqrt{q}\|f\|_{\infty}^{\mathbb{C}}\left\|\mathrm{D}_{\zeta} f^{\dagger} \Delta\right\|_{2,2}
\end{gathered}
$$

... with similar condition numbers
Complex setting:

$$
\begin{gathered}
\mu_{\text {norm }}(f, \zeta):=\|f\|_{W}\left\|\mathrm{D}_{\zeta} f^{\dagger} \Delta^{1 / 2}\right\|_{2,2} \\
\downarrow \\
\mathrm{M}(f, \zeta)=\sqrt{q}\|f\|_{\infty}^{\mathbb{C}}\left\|\mathrm{D}_{\zeta} f^{\dagger} \Delta\right\|_{2,2}
\end{gathered}
$$

Real setting:

$$
\begin{aligned}
& \kappa(f):= \sup _{x \in \mathbb{S}^{n}} \frac{\|f\|_{W}}{\sqrt{\|f(x)\|_{2}^{2}+\left\|\mathrm{D}_{x} f^{\dagger} \Delta^{1 / 2}\right\|_{2,2}^{-2}}} . \\
& \downarrow \\
& K(f):=\sup _{x \in \mathbb{S}^{n}} \frac{\sqrt{q}\|f\|_{\infty}^{\mathbb{R}}}{\max \left\{\|f(x)\|,\left\|\mathrm{D}_{x} f^{\dagger} \Delta\right\|_{2,2}^{-1}\right\}} .
\end{aligned}
$$

Any problems?

$\left\|\|_{\infty}\right.$ is not cheap to estimate

Proposition
Given $(f, k) \in \mathcal{H}_{\mathrm{d}}^{\mathbb{F}}[q] \times \mathbb{N}$ we can compute T such that

$$
\left(1-2^{-k}\right) \mathrm{T} \leq\|f\|_{\infty} \leq \mathrm{T}
$$

with cost

$$
\mathcal{O}\left(2^{n \log n} \mathrm{D}^{n} 2^{\frac{(k+1) n}{2}} N\right)
$$

Gains are big enough to compensate for this

THREE Applications

1st Application:
 Computing the Betti numbers of (Semi-)Algebraic Sets

State of the art

Theorem

There is a numerical algorithm BETTI that, given $f \in \mathcal{H}_{d}[q]$, returns the Betti numbers of its zero set $Z(f) \subset \mathbb{S}^{n}$. The cost of BETTI on input f is bounded as

$$
\operatorname{cost}(f) \leq 2^{\mathcal{O}\left(n^{2} \log n\right)} D^{\mathcal{O}\left(n^{2}\right)} \kappa(f)^{\mathcal{O}\left(n^{2}\right)}
$$

Furthermore, it satisfies

$$
\operatorname{cost}(p) \leq q^{\mathcal{O}(n)}(n D)^{\mathcal{O}\left(n^{3}\right)}
$$

with probability at least $1-(n q D)^{-n}$.

The result holds for a class of distributions extending the Gaussian Outside a set of vanishingly small measure this yields an exponential acceleration over all previous algorithms
sus

The Algorithm

$\kappa(f)$ controls the mesh of the grid!

The Algorithm

$\kappa(f)$ is in the criterion to determine which points are near!

The Algorithm

$\kappa(f)$ determines how big we should take the balls!
(Through the Niyogi-Smale-Weinberger Theorem and a bound on the reach!)

The Algorithm

Betti numbers of zero set (Even torsion coefficients!)

Replacing || \|w with $\left\|\|_{\infty}\right.$

(1) The same scheme can be applied using K instead of κ
(2) $\frac{\operatorname{cost}\left(\operatorname{BETTI}_{\infty}, f\right)}{\operatorname{cost}\left(\operatorname{Betti}_{W}, f\right)} \leq\left(\frac{K(f)}{\kappa(f)}\right)^{10 n}$
(3) For random \mathfrak{f}

$$
\frac{\operatorname{cost}\left(\mathrm{BETTI}_{\infty}, \mathfrak{f}\right)}{\operatorname{cost}\left(\mathrm{BETTI}_{w}, \mathfrak{f}\right)} \leq\left(\frac{C n \sqrt{q D \ln (e D)}}{\sqrt{N-20 n}}\right)^{10 n}
$$

with probability at least $1-\frac{1}{N}$
For fixed n and large D , the ratio in the right-hand side is of the order of

$$
\left(\frac{C \sqrt{\ln (e \mathrm{D})}}{D^{\frac{n-1}{2}}}\right)^{10 n}
$$

2nd Application: The Plantinga-Vegter Algorithm

- Given a real polynomial f, the PV algorithm meshes the real zero set.
- Mostly used for two and three variables by computer graphics community, reported to be efficient, and quite popular
- Concretely speaking:

Given a polynomial $f \in \mathbb{R}[X, Y]$ (or $f \in \mathbb{R}[X, Y, Z]$) with degree d it computes an isotopic piecewise linear approximation of the zero set of f within a given square in \mathbb{R}^{2} (cube in \mathbb{R}^{3}, respectively).

- Ambiguous for precision control
- Worst-case complexity analysis by Burr, Gao, Tsigaridas came after 14 years and predicted exponential running time
- We use condition numbers for precision control and beyond-worst-case complexity analysis

Smoothed Analysis of Algorithms

- Perturb a deterministic input g with a random input \mathfrak{h} :

$$
g+\sigma\|g\| \mathfrak{h}
$$

where $\sigma \in(0, \infty)$ controls the "variance"

- For the algorithm of interest, we bound the quantity

$$
\sup _{g} \mathbb{E}_{\mathfrak{h}} \operatorname{cost}(g+\sigma\|g\| \mathfrak{h})
$$

- $\sigma=0$ gives the worst-case complexity analysis
- $\sigma \rightarrow \infty$ gives the average case complexity analysis
- $\sigma \in(0, \infty)$ gives the smoothed complexity analysis
- Smoothed analysis explains run-time in practice!
- Note that we need to choose a probability distribution for \mathfrak{h} In our case, \mathfrak{h} is a dobro random polynomial, i.e., subgaussian coefficients with bounded continuous density

Worst-case case complexity of the PV algorithm

$$
2^{\mathcal{O}\left(d^{n}\right)}
$$

Smoothed complexity of the PV algorithm

With the Weyl norm,

$$
d^{\mathcal{O}\left(n^{2}\right)}
$$

With the ∞-norm,

$$
(d \log d)^{\mathcal{O}(n)}
$$

Smoothed complexity of the PV algorithm for low dimensions

	$n=2$	$n=3$
PV_{W}	$\mathcal{O}\left(d^{8}\right)$	$\mathcal{O}\left(d^{13}\right)$
PV_{∞}	$\mathcal{O}\left(d^{7} \log ^{1.5}(d)\right)$	$\mathcal{O}\left(d^{10} \log ^{2}(d)\right)$

3rd Application:
 Systems of

complex quadratic equations

$$
q_{t}:=t f+(1-t) g
$$

$$
d_{\mathbb{S}}\left(q_{i}, q_{i+1}\right):=\frac{0.008535284}{\operatorname{dist}_{\mathbb{S}}(f, g) \mathrm{D}^{3 / 2} \mu_{\mathrm{norm}}\left(q_{i}, z_{i}\right)^{2}}
$$

$$
z_{i+1}:=N_{q_{i+1}}\left(z_{i}\right)
$$

$$
d_{\mathbb{S}}\left(q_{i}, q_{i+1}\right):=\frac{P^{n}}{\frac{\|f-g\|_{\infty}^{\mathbb{C}}}{\left\|q_{i}\right\|_{\infty}^{\infty}} \mathrm{DM}\left(q_{i}, z_{i}\right)^{2}} \quad z_{z_{i+1}}:=N_{q_{i+1}}\left(z_{i}\right) .
$$

	EXPECTED \# STEPS	COST OF STEP	TOTAL COST
W	$\mathcal{O}\left(n \mathrm{D}^{3 / 2} N\right)$	$\mathcal{O}(N)$	$\mathcal{O}\left(n \mathrm{D}^{3 / 2} N^{2}\right)$
∞	$\mathcal{O}\left(n^{3} \mathrm{D} \log (e \mathrm{D})\right)$	Large	Large

The case of quadratic equations: $\mathrm{D}=2\left(N=\mathcal{O}\left(n^{3}\right)\right)$

	EXPECTED \# STEPS	COST OF STEP	TOTAL COST
W	$\mathcal{O}\left(n^{4}\right)$	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(n^{7}\right)$
∞	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(n^{1.5+\omega}\right)$	$\mathcal{O}\left(n^{4.5+\omega}\right)$

Note that $\omega<2.375$!

Conclusion

As in the case of numerical linear algebra, a careful choice of norms can improve algorithm efficiency

¡Muchas Gracias!

Teșekkürler!

Eskerrik asko!

