Higher Moment Varieties of Non-Gaussian Graphical Models

Carlos Améndola Mathias Drton Alexandros Grosdos
Roser Homs Elina Robeva

MEGA 21
Graphical models capture causal relations between random variables

\[X_1: \text{Drug} \quad \longrightarrow \quad X_3: \text{Thrombosis} \]

\[X_2: \text{Atrial fibrillation} \]

Translating to equations:

\[
\begin{align*}
X_1 &= \varepsilon_1 \\
X_2 &= \lambda_{12} X_1 + \varepsilon_2 \\
X_3 &= \lambda_{13} X_1 + \lambda_{23} X_2 + \varepsilon_3
\end{align*}
\]
A graph G gives rise to structural equations

$$X_i = \sum_{j \in \text{pa}(i)} \lambda_{ji} X_j + \varepsilon_i, \quad i \in V,$$

where

- ε_i represent stochastic errors with $\mathbb{E}[\varepsilon_i] = 0$,
- λ_{ji} are unknown parameters forming a matrix $\Lambda = (\lambda_{ji})$.

The corresponding model is

$$\mathcal{M}^{(2,3)}(G) = \{ (S = (I - \Lambda)^{-T} \Omega^{(2)}(I - \Lambda)^{-1},
\quad T = \Omega^{(3)} \bullet (I - \Lambda)^{-1} \bullet (I - \Lambda)^{-1} \bullet (I - \Lambda)^{-1}) : \Omega^{(2)} \text{ is } n \times n \text{ positive definite diagonal matrix, } \\
\Omega^{(3)} \text{ is } n \times n \times n \text{ diagonal 3-way tensor, and } \Lambda \in \mathbb{R}^E \}.$$

This makes (statistical) sense for Non-Gaussian random variables.
A trek τ with top v between i and j is formed by two paths sharing a source v

$$i \leftarrow i_l \leftarrow \cdots \leftarrow i_1 \leftarrow v \rightarrow j_1 \rightarrow \cdots \rightarrow j_r \rightarrow j.$$

An n-trek between n vertices i_1, \ldots, i_n is an ordered collection of n directed paths $T = (P_1, \ldots, P_n)$, where P_r has sink i_r and they all share the same top vertex as source $v = \text{top}(T)$.
For a graph G, let $T(i_1, \ldots, i_n)$ denote all minimal n-treks between i_1, \ldots, i_n.

Consider the ring morphism ϕ_G:

$$
\mathbb{C}[s_{ij}, t_{i\ell k} \mid 1 \leq i \leq j \leq k \leq n] \rightarrow \mathbb{C}[a_i, b_i, \lambda_{ij} \mid i \mapsto j \in E]
$$

$$
s_{ij} \mapsto \sum_{T \in T(i, j)} a_{\text{top}(T)} \prod_{k \rightarrow l \in T} \lambda_{kl},
$$

$$
t_{i\ell k} \mapsto \sum_{T \in T(i, j, k)} b_{\text{top}(T)} \prod_{m \rightarrow l \in T} \lambda_{ml}.
$$

Example

$$
s_{ii} \mapsto a_i
$$

$$
t_{iii} \mapsto b_i
$$

$$
s_{13} \mapsto a_1 \lambda_{13}
$$

$$
s_{14} \mapsto a_1 \lambda_{12} \lambda_{24} + a_1 \lambda_{13} \lambda_{34}
$$

$$
t_{123} \mapsto b_1 \lambda_{12} \lambda_{13}
$$

1 \ 2 \ 3

4
Proposition [Sullivant 08; Améndola, Drton, G, Homs & Robeva 21+] Let G be a DAG (directed acyclic graph) and ϕ_G given by the simple trek rule. Then the vanishing ideal $I^{(2,3)}(G) := \mathcal{I}(\mathcal{M}^{(2,3)}(G))$ of the model is

$$I^{(2,3)}(G) = \ker \phi_G.$$

Corollary [Améndola, Drton, G, Homs & Robeva 21+] If G is a tree, $I^{(2,3)}(G)$ is a toric ideal.
Vanishing minors

Let $i, j \in V$ be two vertices such that a 2-trek between i and j exists. Define

$$A_{ij} := \begin{bmatrix}
 s_{ik_1} & \cdots & s_{ik_r} & t_{i\ell_1m_1} & \cdots & t_{i\ell_qm_q} \\
 s_{jk_1} & \cdots & s_{jk_r} & t_{j\ell_1m_1} & \cdots & t_{j\ell_qm_q}
\end{bmatrix},$$

where

- k_1, \ldots, k_r are all vertices such that $\text{top}(i, k_a) = \text{top}(j, k_a)$ and
- $(l_1, m_1), \ldots, (l_q, m_q)$ are all pairs of vertices such that $\text{top}(i, l_b, m_b) = \text{top}(j, l_b, m_b)$.

Proposition [Améndola, Drton, G, Homs & Robeva 21+] For a tree G, the following polynomials are in $I^{(2,3)}(G)$:

- s_{ij} such that there is no 2-trek between i and j,
- t_{ijk} such that there is no 3-trek between i, j and k,
- the 2-minors of A_{ij}, for all (i, j) with a 2-trek between them.
Proposition [Améndola, Drton, G, Homs & Robeva 21+] All quadratic binomials in $I^{(2,3)}(G)$ are linear combinations of 2-minors of matrices A_{ij}.

Example The binomial $f = s_{23}t_{145} - s_{45}t_{123}$ lies in $I^{(2,3)}(G')$. It is the sum of the minors from A_{13}, A_{14} and A_{15}.

Theorem [Améndola, Drton, G, Homs & Robeva 21+] All binomials in $I^{(2,3)}(G')$ are generated by quadratic binomials, i.e. $I^{(2,3)}(G')$ is generated by the matrices A_{ij} (plus vanishing indeterminates).

Proof A distance reduction argument for binomials in the ideal, showing that matrix minors are a Markov basis.
Let \(H \cup O \) be a partition of the nodes of the DAG \(G \). The hidden nodes \(H \) are said to be *upstream* from the observed nodes \(O \) in \(G \) if there are no edges \(o \to h \) in \(G \) with \(o \in O \) and \(h \in H \).

Lemma The ideal \(I^{(2,3)}(G) \) is homogeneous w.r.t. the grading:

\[
\begin{align*}
\deg s_{ij} &= (1, 1 + \text{number of elements in the multiset } \{i, j\} \text{ in } O) \\
\deg t_{ijk} &= (1, \text{number of elements in the multiset } \{i, j, k\} \text{ in } O) .
\end{align*}
\]

Proposition For a tree \(G \), \(I^{(2,3)}_O(G) \) is generated by the minors of the submatrices of \(A_{ij} \) with \(i, j \) both in \(O \), with columns indexed by \(k \) and \((l, m) \) where \(k, l, m \) are all in \(O \).
Theorem [Améndola, Drton, G, Homs & Robeva 21+] Let J be the ideal generated by the linear generators of $I^{(2,3)}(G)$ and matrices A_{ij} such that there is a directed path between i and j. Then

$$\mathcal{M}^{(2,3)}(G) = V(J) \cap PD(n).$$

In particular, pick $(S, T) \in \mathcal{M}^{(2,3)}(G)$. For $i \rightarrow j \in E$, let $\lambda_{ij} = \frac{s_{ij}}{s_{ii}}$, coming from A_{ij}. Then one can show

$$S' = (I - \Lambda)^T S (I - \Lambda) \quad \text{and} \quad T' = T \bullet (I - \Lambda) \bullet (I - \Lambda) \bullet (I - \Lambda)$$

are diagonal.

Example Let G be $1 \rightarrow 2, 1 \rightarrow 3, 1 \rightarrow 4, 1 \rightarrow 5$. Computation shows

$$I^{(2,3)}(G) = (J : s_{11}^{\infty})$$

and

$$\mathcal{M}^{(2,3)}(G) = V(I^{(2,3)}(G)) \cap PD(5) = V(J) \cap PD(5).$$
Summary

- Graphical models are richer in the Non-Gaussian setting, it is meaningful to study covariance matrices plus higher-order moment tensors.
- The trek rules can be extended for h.o.m. and one can obtain binomial (matrix minors) descriptions of the corresponding ideals.
- The hidden variable ideals and the varieties only need a subset of the polynomials.

For more information have a look at the extended abstract and stay tuned for the preprint.
THANK YOU!