Parametrizing generic curves of genus five and its application to finding curves with many rational points

Momonari Kudo1 and Shushi Harashita2

1The University of Tokyo
2Yokohama National University

June 10th 2021

MEGA2021: Effective Methods in Algebraic Geometry

Our paper is available at arXiv: 2102.07270 [math.AG].
Outline

1. Introduction

Throughout this talk, a “curve” means a non-singular and geometrically irreducible projective variety of dimension one, unless otherwise noted.
Motivation

- **Parametrizing the space of curves of given genus**
 - This is a very basic and classical problem in the theory of algebraic curves.
 - We consider to parameterize the space of curves by an explicit equation.
 - It is desirable that the number of parameters is equal or close to the dimension of the space.
 - In this talk, such a parameterization is said to be effective.

- **Hyperelliptic case is well-known, but non-hyperelliptic case is...**
 - Any hyperelliptic curve of genus g is given by
 \[y^2 = f(x) \]
 with $\deg f(x) = 2g + 1$ or $2g + 2$, where g is the genus.
 - How about the non-hyperelliptic case for $g \geq 3$?
 - **Note:** Any curve of genus $g = 1, 2$ is hyperelliptic.
Some known parameterizations in genus $g = 3, 4$

- **Genus 3: Canonically embedded into \mathbb{P}^2**
 - Bergström proved that a canonical curve of genus 3 over a field admitting a rational point over a field of characteristic $\neq 2, 3$ is given by a quartic with 7 parameters (cf. the moduli dimension is 6).
 - See Proposition 3.7 of the following paper for details.

- **Genus 4: Canonically embedded into \mathbb{P}^3**
 - Complete intersection $V(Q, P)$ of a quadratic $V(Q)$ and a cubic $V(P)$
 - The authors gave an effective parametrization of the space of $V(Q, P)$’s

Our contribution

- For $g = 5$, we present an effective parameterization:

 (A) We prove that any non-hyperelliptic and non-trigonal curve C of genus 5 is the desingularization of a sextic C' in \mathbb{P}^2 (in most cases C' has five double points). We need 12 parameters to describe C' having fixed five double points, where 12 is just the dimension of their moduli space. Very effective!

 (B) Based on the parametrization, we present an algorithm to enumerate \emph{generic} (defined in a slide below) curves of genus 5 over \mathbb{F}_q with many rational points.

 (C) For $K = \mathbb{F}_3$, we determine all the possible positions of singular points of C'. For each position, we executed the algorithm given in (B) over MAGMA. We obtain curves over K with many \mathbb{F}_9-rational points.
Outline

1. Introduction

2. Non-hyperelliptic and non-trigonal curves of genus 5

3. Algorithm to enumerate genus-5 generic curves over finite fields with many rational points

4. Position analysis for \mathbb{F}_3 and computational results with explicit equations in characteristic 3

5. Concluding remark
Curves of genus 5

• **Hyperelliptic curve:**
 \[y^2 = f(x) \]
 with \(\deg f(x) = 11, 12 \).

• **Trigonal curve \(C \):**
 By definition, there exists a dominant morphism
 \[C \to \mathbb{P}^1 \]
 of degree 3.
 A realization: the desingularization of a *quintic* in \(\mathbb{P}^2 \)
 with a single singular point of multiplicity two.

 M. Kudo and S. Harashita: *Superspecial trigonal curves of genus 5*,
 Experimental Mathematics, Published online: 16 Apr. 2020.

• **The other case (non-hyperelliptic and non-trigonal)**
 In this case, complete intersection \(V(\varphi_1, \varphi_2, \varphi_3) \)
 of three quadratic forms \(\varphi_1, \varphi_2, \varphi_3 \) in \(\mathbb{P}^4 \).
Non-hyperelliptic and non-trigonal curves

- The complete intersection in \mathbb{P}^4:
 \[C = V(\varphi_1, \varphi_2, \varphi_3), \]
 where $\varphi_i \ (i = 1, 2, 3)$ are quadratic forms.

- Sextic model:
 From the complete intersection above with a divisor $P + Q$ for two distinct points P and Q on C, a “projection” using $P + Q$ from \mathbb{P}^4 to \mathbb{P}^2, we can construct a sextic form F in 3 variables so that
 \[C' = V(F) \]
 in \mathbb{P}^2 is birational to C. If C and $P + Q$ is defined over K, then C' is also defined over K. (The assumption that $P + Q$ is defined over K does not matter for our purpose to find curves with many rational points.)
Singularities of sextic models

- Sextic model:
 \[C' = V(F) \]

- Sextic model \(C' \) has singularities. Those should be classified.

- We study a \textit{generic case}, i.e., when the genus formula
 \[g(C) = \frac{(d - 1)(d - 2)}{2} - \sum_{P} \frac{m_P(m_P - 1)}{2} \]
 with \(d = 6 \) and the multiplicity \(m_P \) at \(P \) holds. This case is given by I and II below.

- Several types of singularities on \(C' = V(F) \)
 I. Five double points \(P_1, P_2, P_3, P_4, P_5 \)
 II. One triple point \(P_1 \) and two double points \(P_2, P_3 \)
 III. Other cases (bad singularities: future work.)
Moduli theoretic viewpoint (Case I: generic case)

\#\{monomials of degree 6 in 3 variables\} = 28. For each singular point $P \in \{P_1, P_2, P_3, P_4, P_5\}$, we have three linear equations assuring that the P is a double point, i.e., for example: if $P \notin V(z)$, then $F(P) = F_x(P) = F_y(P) = 0$.

The linear independence of 5×3 linear equations is checked. Considering a scalar multiplication to the whole sextic, the number of free parameters is

$$28 - 5 \times 3 - 1 = 12.$$

This 12 is just the dim. of the moduli of curves of genus 5!, where dim. of choices of two points on C making $C \to C'$ and the dim. of the space of 5 points on \mathbb{P}^2 up to $\text{Aut}(\mathbb{P}^2)$ are both 2 and are considered to be canceled. The parametrization by the sextic models is very effective!
Remark on arrangement of singularities

• We consider the following two cases:
 I. Five double points P_1, P_2, P_3, P_4, P_5
 II. One triple point P_1 and two double points P_2, P_3

Proposition

(1) In case I, if distinct four elements of
 \{P_1, P_2, P_3, P_4, P_5\}
 are contained in a hyperplane, then C' is geometrically reducible.
(2) In case II, if P_1, P_2, P_3 are contained in a hyperplane,
 then C' is geometrically reducible.
1. Introduction

2. Non-hyperelliptic and non-trigonal curves of genus 5

3. Algorithm to enumerate genus-5 generic curves over finite fields with many rational points

4. Position analysis for \mathbb{F}_3 and computational results with explicit equations in characteristic 3

5. Concluding remark
A sextic form F giving a model of genus-5 generic curve

- F has 28 unknown coefficients (write a_1, \ldots, a_{28})
- (a_1, \ldots, a_{28}) is a solution of a system of 15 linear equations derived from the definition of the multiplicity of a singular point.
 - e.g. If $V(F)$ is singular at $P = (a: b: 1)$ with multiplicity 2, then the linear and constant parts of $F(X + a, X + b, 1)$ are zero. \Rightarrow Obtain 3 equations.
- F is irreducible and $V(F)$ has geometric genus 5.

An algorithm to enumerate curves with many rational points

- Regarding a_1, \ldots, a_{28} as indeterminates, we can construct an algorithm (see Section 3 of our paper for details) to enumerate genus-5 generic curves C with $#C(F_q) \geq N$, where N is given.
- Counting $#C(F_q)$, we use a formula given in the next slide.
Enumeration of curves with many rational points (2/2)

 Formula for the number of rational points

- For $K = \mathbb{F}_q$, we have
 \[
 \#C(\mathbb{F}_q) = \#C'(\mathbb{F}_q) + \sum_{P \in \text{Sing}(C')} \left(\#V(h_P)(\mathbb{F}_q) - 1 \right),
 \]
 where
 - h_P is the homogeneous part of the least degree (i.e., m_P) of the Taylor expansion at P of an affine model containing P of the sextic defining C'.
 - $V(h_P)$ is the closed subscheme of \mathbb{P}^1 defined by the ideal $\langle h_P \rangle$.

- If h_P is quadratic, then
 \[
 \#V(h_P) - 1 = \begin{cases}
 1 & \text{if } \frac{\Delta(h_P)}{q-1} = 1 \\
 -1 & \text{if } \frac{\Delta(h_P)}{q-1} = -1 \\
 0 & \text{if } \frac{\Delta(h_P)}{q-1} = 0
 \end{cases}
 \]
 where $\Delta(h_P)$ is the discriminant of h_P.

Outline

1. Introduction

2. Non-hyperelliptic and non-trigonal curves of genus 5

3. Algorithm to enumerate genus-5 generic curves over finite fields with many rational points

4. Position analysis for \mathbb{F}_3 and computational results with explicit equations in characteristic 3

5. Concluding remark
Position analysis of singular points for C' over \mathbb{F}_3

- We classify all arrangements of singular points on \mathbb{P}^2 up to automorphisms over \mathbb{F}_3 of \mathbb{P}^2 in each case of
 1. Five double points P_1, P_2, P_3, P_4, P_5
 2. One triple point P_1 and two double points P_2, P_3
- Since C' is defined over \mathbb{F}_3,
 1. The set $\{P_1, P_2, P_3, P_4, P_5\}$ is defined over \mathbb{F}_3.
 2. The point P_1 is defined over \mathbb{F}_3 and the set $\{P_2, P_3\}$ is defined over \mathbb{F}_3.

Case I: The patterns of the Frobenius orbits in $\{P_1, P_2, P_3, P_4, P_5\}$ is either of $(1,1,1,1,1), (1,1,1,2), (1,2,2), (1,1,3), (2,3), (1,4)$ and (5): for example $(1,2,2)$ means that $\{P_1, P_2, P_3, P_4, P_5\}$ consists of three Frobenius orbits each of which has cardinality 1, 2 and 2 respectively.
Computational results of position analysis for Case I

- **Case (1,1,1,1,1):** two positions up to $\text{Aut}_{F_3}(\mathbb{P}^2)$
 - $P_1 = (1:0:0), P_2 = (0:1:0), P_3 = (0:0:1)$
 1. $P_4 = (1:1:0), P_5 = (0:1:1),$
 2. $P_4 = (1:1:0), P_5 = (1:2:1)$
- **Case (1,1,1,2):** three positions up to $\text{Aut}_{F_3}(\mathbb{P}^2)$
 - $P_1 = (1:0:0), P_2 = (0:1:0), P_3 = (0:0:1)$
 1. $P_4 = (1:ζ^5:ζ^7), P_5 = P_4^\sigma$, where $ζ$ is a primitive element in F_9
 2. $P_4 = (1:ζ^7:1), P_5 = P_4^\sigma$
 3. $P_4 = (1:ζ^2:ζ^2), P_5 = P_4^\sigma$ with Frobenius σ.
- **Case (1,2,2):** five positions (omit)
- **Case (1,1,3):** four positions (omit)
- **Case (2,3):** three positions (omit)
- **Case (1,4):** five positions (omit)
- **Case (5):** two positions (omit)
Computational results of position analysis for Case II

- **Case (1,1):** unique position up to $\text{Aut}_{\mathbb{F}_3}(\mathbb{P}^2)$

 \[P_1 = (0:0:1), P_2 = (1:0:0), P_3 = (0:1:0) \]

- **Case (2):** unique position up $\text{Aut}_{\mathbb{F}_3}(\mathbb{P}^2)$

 \[P_1 = (0:0:1), P_2 = (1:\zeta:0), P_3 = (1:\zeta^3:0) \]

➢ For each position in Cases I and II, we executed our algorithm over MAGMA to enumerate genus-5 generic curves over \mathbb{F}_3 with many \mathbb{F}_9-rational points. Computational results are described in the next slides.
Computational results (1/2)

Executing our algorithm over MAGMA, we have the following:

Theorem The maximal number of $\#C(F_9)$ of genus-5 generic curves C over F_3 is 32. Moreover, there are precisely four F_9-isogeny classes of Jacobian varieties of genus-5 generic curves C over F_3 with 32 F_9-rational points, whose Weil polynomials are

1. \((t^2 + 2t + 9)(t^2 + 5t + 9)^4\)
2. \((t + 3)^2(t^4 + 8t^3 + 32t^2 + 72t + 81)^2\)
3. \((t + 3)^4(t^2 + 2t + 9)(t^2 + 4t + 9)^2\)
4. \((t + 3)^6(t^2 + 2t + 9)^2\)

Note: The maximal number of $\#C(F_9)$ of curves of genus 5 over F_9 is unknown, but is known to belong between 32 and 35 (cf. manypoints.org).

While a curve with the Weil polynomial (1) (resp. (4)) was found by Fischer (resp. Ramos-Ramos), our curves with (2) and (3) are new examples with $\#C(F_9) = 32$.
Some examples (ζ: a primitive element of \mathbb{F}_9)

- Case (1,1,1,2) with linearly independent P_1, P_2, P_3 where $P_4 = (1: \zeta^5: \zeta^7)$. The sextic

$$F = x^4y^2 + x^3y^3 + x^2y^4 + 2x^3y^2z + xy^4z + x^2y^2z^2 + 2xy^3z^2 + 2x^3z^3$$

$$+ 2y^3z^3 + x^2z^4 + 2xyz^4 + 2y^2z^4 + z^6$$

has 32 \mathbb{F}_9-rational points with Weil polynomial

$$(t + 3)^4(t^2 + 2t + 9)(t^2 + 4t + 9)^2.$$

- Case (1,2,2) with $P_2 = (1: 2: \zeta^5)$ and $P_4 = (1: \zeta^2: \zeta^7)$. The sextic

$$F = x^4y^2 + 2x^3y^3 + 2xy^5 + 2y^6 + x^2y^3z + 2y^5z + 2x^4z^2 + x^3yz^2 + xy^3z^2$$

$$+ 2x^3z^3 + x^2yz^3 + xyz^4 + y^2z^4 + 2xz^5 + 2yz^5 + z^6$$

has 32 \mathbb{F}_9-rational points with Weil polynomial

$$(t + 3)^2(t^4 + 8t^3 + 32t^2 + 72t + 81)^2.$$
Outline

1. Introduction

2. Non-hyperelliptic and non-trigonal curves of genus 5

3. Algorithm to enumerate genus-5 generic curves over finite fields with many rational points

4. Position analysis for \mathbb{F}_3 and computational results with explicit equations in characteristic 3

5. Concluding remark
Summary and open problems

- In this work, we presented the following:
 - Parametrization of the space of genus-5 generic curves
 - A plane sextic model with mild singularities
 - The number of parameters is just(!) the moduli dimension (= 12)
 - Algorithm to enumerate genus-5 generic curves with many rational points
 - Enumeration of such curves over \mathbb{F}_3
 - We found new examples which are not listed in manypoints.org

- Future works
 - Parameterization of the space of curves with more complex singularities.
 - Present methods to compute invariants of genus-5 generic curves.
 - How do we test whether two such curves are isomorphic or not?
 - Improve the efficiency of the proposed algorithm.