The 3-dim. toric variety: M, N: 3-dim. dual lattices, $T = (\mathbb{C}^*)^3$.
$\Delta \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ a 3-dimensional lattice polytope,
Σ_{Δ}: The normal fan of Δ, with rays $\Sigma_{\Delta}[1]$.
\mathbb{P}_{Δ}: The toric variety to the polytope Δ via the normal fan. \mathbb{P}_{Σ}: The toric variety to the fan Σ.

The hypersurface:
$f = \sum_{m \in \Delta \cap M} a_m x^m$, $a_m \in \mathbb{C}$
a Laurent polyn. with Newton polytope Δ. For a 3-dimensional polytope Z
$Z_f := \{ f = 0 \} \subset T$, the associated hypersurface. For a 3-dimensional polytope P we write Z_P for the closure of Z_f in the toric variety \mathbb{P}_P.

The nondegeneracy condition:
The hypersurface should intersect the toric strata transversally.

The Fine interior and the canonical closure:
For $\nu \in N$ let
$\text{ord}_{\Delta}(\nu) := \min_{m \in \Delta \cap M} \langle m, \nu \rangle$.
Then define the Fine interior
$F(\Delta) := \{ x \in M_{\mathbb{R}} \mid \langle x, \nu \rangle \geq \text{ord}_{\Delta}(\nu) + 1, \nu \in N \setminus \{0\} \}$.
The support $S_F(\Delta)$ are the $\nu \in N \setminus \{0\}$ with
$\text{ord}_{F(\Delta)}(\nu) = \text{ord}_{\Delta}(\nu) + 1$.

$C(\Delta) := \{ x \in M_{\mathbb{R}} \mid \langle x, \nu \rangle \geq \text{ord}_{\Delta}(\nu) \forall \nu \in S_F(\Delta) \}$ is called the canonical closure of Δ. We obtain $F(\Delta) \subset \Delta \subset C(\Delta)$.

Classification of some polytopes:
Δ is called:
- canonical, if it contains just 0 in its interior.
- Fano, if its vertices are primitive points.
There are just 49 3-dim. canonical Fano polytopes left with $\dim F(\Delta) = 3$.

Result: Among the 49 polytopes there are just 5 iso. types for the Fine interior $F(\Delta)$.

Result: For F out of these 5 types there is exactly one maximal polytope Δ with $F(\Delta) = F$.

Result: For Δ a maximal polytope:
$\mathbb{P}_{\Delta} \cong \mathbb{P}_P \cong \mathbb{P}_C(\Delta) \cong \mathbb{P}_{F(\Delta)}$.

Constructing canonical/minimal models:
Result (Bat20): If $k := \dim F(\Delta) \geq 0$, the Kodaira dimension of Z_P equals
$\kappa(Z_P) = \min(k, 2)$. For our 49 polytopes Δ we get $\kappa(Z_P) = 2$.

Result (Bat20): Z_P has at most canonical sing. and K_{Z_P} is nef. The closure $Z_{F(\Delta)}$ gets a canonical model.

Result (Bat20): $\Sigma_P[1] \subset S_F(\Delta)$. Choose a refinement Σ of Σ_P with $\Sigma[1] = S_F(\Delta)$, then the closure of Z_f in \mathbb{P}_Σ gets a minimal model.

Result (Gie21): In 46 cases $Z_{F(\Delta)}$ gets a
Kanev surface, i.e. $p_g(Z_{F(\Delta)}) = 1$, $K^2_{Z_{F(\Delta)}} = 1$ and in 3 cases a surface of Todorov type, that is
$p_g(Z_{F(\Delta)}) = 1$, $q(Z_{F(\Delta)}) = 0$, $K^2_{Z_{F(\Delta)}} = 2$.

Illustration of some polytopes:
3 polytopes with the left one maximal.

A cross-section of the only 3-dim. cone that gets refined in going from $\Sigma_{F(\Delta)}$ over Σ_P to Σ. The subdivision defines Σ_P and the additional rays are vectors defining Σ. These are all support vectors we need for constructing a minimal model.

An Interpretation and further results (Gie21):
Result: The sing. of Z_P are of type A_k. The interior points in the cross-section define the Dynkin diagram of the sing. of $Z_{F(\Delta)}$ at p. So $Z_{F(\Delta)}$ has an A_2 (an E_6) singularity in the middle (right) picture.

Result: This subdivision yields a degen. of $Z_{F(\Delta)}$ into two weak del Pezzo surfaces. By this the generic Picard number of several Kanev surfaces are computable.

References: (Bat20): Canonical models of toric hypersurfaces. (Gie21): Kanev surfaces in toric 3-folds.