Bounds on complexity of matrix multiplication away from CW tensors

Roser Homs, Joachim Jelisiejew, Mateusz Michałek, Tim Seynnaeve
Technical University of Munich, University of Warsaw, University of Konstanz, University of Bern

Complexity of matrix multiplication: ω

Definition of complexity: smallest ω such that for any $\epsilon > 0$
- the multiplication of $n \times n$ matrices requires $O(n^{\omega+\epsilon})$ operations
- the matrix multiplication tensor has border rank $O(n^{\omega+\epsilon})$

$$M_{(n,n,n)} := \sum_{j=1}^{\omega} e_j^* \otimes e_j \otimes e_j \in (\text{Mat}_n)^* \otimes (\text{Mat}_n)^* \otimes \text{Mat}_n$$

The naive bound $\omega \leq 3$ has been successively improved:
- 1969: only 7 operations are required to multiply two 2×2 matrices
- 1987: laser method applied to Strassen's tensor: $\omega < 2.48$ [Str87]
- 1990: laser method applied to Coppersmith-Winograd's tensor: $\omega < 2.3755$ [CW90]

Conjecture: $\omega = 2$

State of the art
- Stothers, Williams, Le Gall: $\omega < 2.373$ applying laser method to Coppersmith-Winograd (CW) tensor
- Barriers for CW tensors: $\omega > 2.30$
- Barriers for minimal border rank tensors of fixed dimension: $\omega = 2$ cannot be proved [BL20]

Laser method

The value of a tensor T is
$$V(T) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \left(\sum_{k=1}^{n} T_{ijk} \right) \right)$$

- Estimate the value of a tensor from subtensors with known value
- Given a tensor of minimal border rank, a lower bound on the value gives an upper bound on ω

Our goal

Explore new families of tensors coming from algebraic structures such that
- have minimal border rank and
- degenerate to a direct sum of large matrix multiplication tensors

Multiklick maps of smoothable algebras

- Multiplication maps of smoothable algebras are tensors of minimal border rank [BL16]
- Local algebras with Hilbert function (1,1,1) and (1,2,2) are smoothable [CEVV09]

$$A = \mathbb{C}[z_1, \ldots, z_m]/I_G$$

is a smoothable algebra with Hilbert function (1,3m,2), I_G ideal generated by
$$a_{3m+1} = a_{1m+1}$$
$$a_{3m+2} = a_{2m+1}$$

products a_ia_j, $1 \leq i < j \leq 3m+2$ not above.

The multiplication map of A is a tensor T_A

Special case: multiplication maps of monomial algebras

$$A := A \otimes A \simeq \mathbb{C}[x,y]/(xyz)^2$$

The multiplication table of A is the tensor T_A

$$\begin{array}{cccccc}
A_{00} & A_{01} & A_{02} & A_{10} & A_{11} & A_{12} \\
A_{20} & A_{21} & A_{22} & A_{30} & A_{31} & A_{32} \\
A_{40} & A_{41} & A_{42} & A_{50} & A_{51} & A_{52} \\
\end{array}$$

The laser method yields $\omega < 2.365$ but T_A degenerates to a Coppersmith-Winograd tensor!

References

On degeneration of tensors and algebras.
In 44th International Symposium on Mathematical Foundations of Computer Science, volume 58 of LIPIcs.

Size rank of block tensors and irreversibility of structure tensors of algebras.
In Javier Esparza and Daniel Král’, editors, 35th International Symposium on Mathematical Foundations of Computer

Hilbert scheme of points.

[CVW69] Don Coppersmith and Shmuel Winograd.
Matrix multiplication via arithmetic progressions.

[Str87] V. Strassen.
Relative bilinear complexity and matrix multiplication.